-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinfoGAN.py
228 lines (174 loc) · 6.94 KB
/
infoGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
import matplotlib.pyplot as plt
import torch
import torchvision
from torchvision import datasets
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.autograd import Variable
#Hyperparameters
batch_size = 64
num_workers = 0
num_epochs = 150
dis_c_dim = 10
num_con_c= 2
z_dim = 74
num_z = 62
num_dis_c= 1
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([
transforms.Resize(28),
transforms.CenterCrop(28),
transforms.ToTensor()])
train_data = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size= batch_size, num_workers= num_workers)
def noise_sample(n_dis_c, dis_c_dim, n_con_c, n_z, batch_size):
z = torch.randn(batch_size, n_z, 1, 1, device= device)
idx = np.zeros((n_dis_c, batch_size))
if(n_dis_c != 0):
dis_c = torch.zeros(batch_size, n_dis_c, dis_c_dim, device= device)
for i in range(n_dis_c):
idx[i] = np.random.randint(dis_c_dim, size=batch_size)
dis_c[torch.arange(0, batch_size), i, idx[i]] = 1.0
dis_c = dis_c.view(batch_size, -1, 1, 1)
if(n_con_c != 0):
# Random uniform between -1 and 1.
con_c = torch.rand(batch_size, n_con_c, 1, 1, device= device) * 2 - 1
noise = z
if(n_dis_c != 0):
noise = torch.cat((z, dis_c), dim=1)
if(n_con_c != 0):
noise = torch.cat((noise, con_c), dim=1)
return noise, idx
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.tconv1 = nn.ConvTranspose2d(74, 1024, 1, 1, bias=False)
self.bn1 = nn.BatchNorm2d(1024)
self.tconv2 = nn.ConvTranspose2d(1024, 128, 7, 1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.tconv3 = nn.ConvTranspose2d(128, 64, 4, 2, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(64)
self.tconv4 = nn.ConvTranspose2d(64, 1, 4, 2, padding=1, bias=False)
def forward(self, x):
x = F.relu(self.bn1(self.tconv1(x)))
x = F.relu(self.bn2(self.tconv2(x)))
x = F.relu(self.bn3(self.tconv3(x)))
img = torch.sigmoid(self.tconv4(x))
return img
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 64, 4, 2, 1)
self.conv2 = nn.Conv2d(64, 128, 4, 2, 1, bias=False)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 1024, 7, bias=False)
self.bn3 = nn.BatchNorm2d(1024)
def forward(self, x):
x = F.leaky_relu(self.conv1(x), 0.1, inplace=True)
x = F.leaky_relu(self.bn2(self.conv2(x)), 0.1, inplace=True)
x = F.leaky_relu(self.bn3(self.conv3(x)), 0.1, inplace=True)
return x
class DHead(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1024, 1, 1)
def forward(self, x):
output = torch.sigmoid(self.conv(x))
return output
class QHead(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1024, 128, 1, bias=False)
self.bn1 = nn.BatchNorm2d(128)
self.conv_disc = nn.Conv2d(128, 10, 1)
self.conv_mu = nn.Conv2d(128, 2, 1)
self.conv_var = nn.Conv2d(128, 2, 1)
def forward(self, x):
x = F.leaky_relu(self.bn1(self.conv1(x)), 0.1, inplace=True)
disc_logits = self.conv_disc(x).squeeze()
mu = self.conv_mu(x).squeeze()
var = torch.exp(self.conv_var(x).squeeze())
return disc_logits, mu, var
G = Generator().to(device)
D = Discriminator().to(device)
D_Head = DHead().to(device)
Q_Head = QHead().to(device)
def real_loss(D_out):
batch_size = D_out.size(0)
labels = torch.ones(batch_size).to(device)
criterion = nn.BCELoss()
# calculate loss
loss = criterion(D_out.squeeze(), labels)
return loss
def fake_loss(D_out):
batch_size = D_out.size(0)
labels = torch.zeros(batch_size).to(device) # fake labels = 0
criterion = nn.BCELoss()
# calculate loss
loss = criterion(D_out.squeeze(), labels)
return loss
class NormalNLLLoss:
"""
Calculate the negative log likelihood
of normal distribution.
This needs to be minimised.
Treating Q(cj | x) as a factored Gaussian.
"""
def __call__(self, x, mu, var):
logli = -0.5 * (var.mul(2 * np.pi) + 1e-6).log() - (x - mu).pow(2).div(var.mul(2.0) + 1e-6)
nll = -(logli.sum(1).mean())
return nll
d_optimizer = optim.Adam([{'params': D.parameters()}, {'params': D_Head.parameters()}], lr= 0.0002)
g_optimizer = optim.Adam([{'params': G.parameters()}, {'params': Q_Head.parameters()}], lr= 0.001)
real_label = 1
fake_label = 0
G.train()
D.train()
D_Head.train()
Q_Head.train()
criterionD = nn.BCELoss()
Q_discre_criterion = nn.CrossEntropyLoss()
Q_con_criterion = NormalNLLLoss()
for epoch in range(num_epochs):
for i, (real_images, _) in enumerate(train_loader):
batch_size = real_images.size(0)
real_images = real_images.to(device)
#Train Discriminator
d_optimizer.zero_grad()
label = torch.full((batch_size, ), real_label, device=device)
ouput1 = D(real_images)
probs_real = D_Head(ouput1).view(-1)
d_real_loss = criterionD(probs_real, label)
d_real_loss.backward()
#fake data
label.fill_(fake_label)
noise, idx = noise_sample(num_dis_c, dis_c_dim ,num_con_c, num_z, batch_size)
fake_image = G(noise.to(device))
output2 = D(fake_image.detach())
probs_fake = D_Head(output2).view(-1)
d_fake_loss = criterionD(probs_fake, label)
d_fake_loss.backward()
#Combine loss
d_loss = d_real_loss + d_fake_loss
d_optimizer.step()
#Train generator
output = D(fake_image)
label.fill_(real_label)
probs_fake = D_Head(output).view(-1)
gen_loss = criterionD(probs_fake, label)
q_logits, q_mu, q_var = Q_Head(output)
target = torch.LongTensor(idx).to(device)
dis_loss = 0
for j in range(num_dis_c):
dis_loss += Q_discre_criterion(q_logits[:, j*10 : j*10 + 10], target[j])
con_loss = 0
if (num_con_c != 0):
con_loss = Q_con_criterion(noise[:, num_z+num_dis_c*dis_c_dim:].view(-1,num_con_c), q_mu, q_var)
G_loss = gen_loss + dis_loss + con_loss
G_loss.backward()
g_optimizer.step()
print('Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'.format(
epoch+1, num_epochs, d_loss.item(), G_loss.item()))