-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathapp.py
129 lines (95 loc) · 3.73 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
'''
Author: Bappy Ahmed
Email: [email protected]
Date:12-Oct-2021
'''
from keras_vggface.utils import preprocess_input
from keras_vggface.vggface import VGGFace
from src.utils.all_utils import read_yaml, create_directory
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import streamlit as st
from PIL import Image
import os
import cv2
from mtcnn import MTCNN
import numpy as np
config = read_yaml('config/config.yaml')
params = read_yaml('params.yaml')
artifacts = config['artifacts']
artifacts_dir = artifacts['artifacts_dir']
#upload
upload_image_dir = artifacts['upload_image_dir']
uploadn_path = os.path.join(artifacts_dir, upload_image_dir)
# pickle_format_data_dir
pickle_format_data_dir = artifacts['pickle_format_data_dir']
img_pickle_file_name = artifacts['img_pickle_file_name']
raw_local_dir_path = os.path.join(artifacts_dir, pickle_format_data_dir)
pickle_file = os.path.join(raw_local_dir_path, img_pickle_file_name)
#Feature path
feature_extraction_dir = artifacts['feature_extraction_dir']
extracted_features_name = artifacts['extracted_features_name']
feature_extraction_path = os.path.join(artifacts_dir, feature_extraction_dir)
features_name = os.path.join(feature_extraction_path, extracted_features_name)
#params_path
model_name = params['base']['BASE_MODEL']
include_tops = params['base']['include_top']
input_shapes = params['base']['input_shape']
poolings = params['base']['pooling']
detector = MTCNN()
model = VGGFace(model=model_name,include_top=include_tops,input_shape=(224,224,3),pooling=poolings)
feature_list = pickle.load(open(features_name,'rb'))
filenames = pickle.load(open(pickle_file,'rb'))
# save_uploaded_image
def save_uploaded_image(uploaded_image):
try:
create_directory(dirs=[uploadn_path])
with open(os.path.join(uploadn_path,uploaded_image.name),'wb') as f:
f.write(uploaded_image.getbuffer())
return True
except:
return False
# extract_features
def extract_features(img_path,model,detector):
img = cv2.imread(img_path)
results = detector.detect_faces(img)
x, y, width, height = results[0]['box']
face = img[y:y + height, x:x + width]
# extract its features
image = Image.fromarray(face)
image = image.resize((224, 224))
face_array = np.asarray(image)
face_array = face_array.astype('float32')
expanded_img = np.expand_dims(face_array, axis=0)
preprocessed_img = preprocess_input(expanded_img)
result = model.predict(preprocessed_img).flatten()
return result
# recommend image
def recommend(feature_list,features):
similarity = []
for i in range(len(feature_list)):
similarity.append(cosine_similarity(features.reshape(1, -1), feature_list[i].reshape(1, -1))[0][0])
index_pos = sorted(list(enumerate(similarity)), reverse=True, key=lambda x: x[1])[0][0]
return index_pos
# streamlit
#st.title('Which Bollywood Celebrity You look like?')
st.title('To whom does your face match?')
uploaded_image = st.file_uploader('Choose an image')
if uploaded_image is not None:
# save the image in a directory
if save_uploaded_image(uploaded_image):
# load the image
display_image = Image.open(uploaded_image)
# extract the features
features = extract_features(os.path.join(uploadn_path,uploaded_image.name),model,detector)
# recommend
index_pos = recommend(feature_list,features)
predicted_actor = " ".join(filenames[index_pos].split('\\')[1].split('_'))
# display
col1,col2 = st.columns(2)
with col1:
st.header('Your uploaded image')
st.image(display_image)
with col2:
st.header("Seems like " + predicted_actor)
st.image(filenames[index_pos],width=300)