-
-
Notifications
You must be signed in to change notification settings - Fork 439
/
Copy pathtrain_length_extrapolate.py
137 lines (101 loc) · 3.52 KB
/
train_length_extrapolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from x_transformers import TransformerWrapper, Decoder
from x_transformers.autoregressive_wrapper import AutoregressiveWrapper
import random
import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 1e-4
GENERATE_EVERY = 500
GENERATE_LENGTH = 256
SEQ_LEN = 256
VALIDATE_EVERY = 100
VALIDATE_SEQ_LENS = (256, 512, 1024, 2048, 4096)
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))
# instantiate GPT-like decoder model
model = TransformerWrapper(
num_tokens = 256,
max_seq_len = SEQ_LEN,
use_abs_pos_emb = False,
attn_layers = Decoder(
dim = 512,
depth = 6,
heads = 8,
dynamic_pos_bias = True,
)
)
model = AutoregressiveWrapper(model)
model.cuda()
# prepare enwik8 data
with gzip.open('./data/enwik8.gz') as file:
data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy()
train_x, valid_x = np.split(data, [int(90e6)])
data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE, drop_last = True))
val_dataset_generate = TextSamplerDataset(data_val, SEQ_LEN)
# validation loaders with different sequence lengths
val_loaders = dict()
for valid_seq_len in VALIDATE_SEQ_LENS:
val_dataset = TextSamplerDataset(data_val, valid_seq_len)
val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE, drop_last = True))
val_loaders[valid_seq_len] = val_loader
# optimizer
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'):
model.train()
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
(loss / GRADIENT_ACCUMULATE_EVERY).backward()
print(f'training loss: {loss.item()}')
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
print(f'validation losses:\n')
model.eval()
with torch.no_grad():
for valid_seq_len in VALIDATE_SEQ_LENS:
val_loader = val_loaders[valid_seq_len]
loss = model(next(val_loader))
print(f'[{valid_seq_len}]:\t {loss.item()}')
print('\n')
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset_generate)[:-1]
prime = decode_tokens(inp)
print(f'%s \n\n %s', (prime, '*' * 100))
sample = model.generate(
prompts = inp,
seq_len = GENERATE_LENGTH,
cache_kv = True
)
output_str = decode_tokens(sample)
print(f'{output_str}\n\n')