-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorphology.py
237 lines (180 loc) · 5.88 KB
/
morphology.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
UAQ Thermo Breast Cancer
morphology.py
author: Marco Garduno
email: [email protected]
last modified: 14 March 2018
'''
import cv2
import numpy as np
import functions as f
def dilation(map, size):
height, width = map.shape
auxMap = np.copy(map)
for k in range(0, size):
# B1
for j in range(0, height):
for i in range(0, width-1):
if auxMap[j, i] < auxMap[j, i+1]:
auxMap[j, i] = auxMap[j, i+1]
# B2
for j in range(0, height-1):
for i in range(0, width):
if auxMap[j, i] < auxMap[j+1, i]:
auxMap[j, i] = auxMap[j+1, i]
# B3
for j in range(0, height):
for i in range(width-1, 0, -1):
if auxMap[j, i] < auxMap[j, i-1]:
auxMap[j, i] = auxMap[j, i-1]
# B4
for j in range(height-1, 0, -1):
for i in range(0, width):
if auxMap[j, i] < auxMap[j-1, i]:
auxMap[j, i] = auxMap[j-1, i]
return auxMap
def erosion(map, size):
height, width = map.shape
auxMap = np.copy(map)
auxMap = f.negative_gray(auxMap)
auxMap = dilation(auxMap,size)
auxMap = f.negative_gray(auxMap)
return auxMap
def opening(map, size):
auxMap = np.copy(map)
auxMap = erosion(auxMap, size)
auxMap = dilation(auxMap, size)
return auxMap
def closing(map, size):
auxMap = np.copy(map)
auxMap = dilation(auxMap, size)
auxMap = erosion(auxMap, size)
return auxMap
def geodesic_dilation(I, J):
height, width = I.shape
flag = True
while(flag):
img_auxiliar = np.copy(J)
for j in range(1, height):
for i in range(1, width-1):
list1 = ( J[j-1, i-1], J[j-1, i], J[j-1, i+1],
J[j, i-1], J[j, i])
J[j, i] = min([max(list1), I[j,i]])
for j in range(height-2, -1, -1):
for i in range(width-2, 0, -1):
list2 = ( J[j, i], J[j, i+1],
J[j+1, i-1], J[j+1, i], J[j+1, i+1] )
J[j, i] = min([max(list2), I[j, i]])
dif = J - img_auxiliar
if np.amax(dif) == 0:
flag = False
return J
def geodesic_erosion(I, J):
I = f.negative_gray(I)
J = f.negative_gray(J)
J = geodesic_dilation(I,J)
I = f.negative_gray(I)
J = f.negative_gray(J)
return J
def closing_by_reconstruction(map, n):
img_auxiliar = np.copy(map)
Y = np.copy(map)
Y = dilation(map, n)
dilatada = np.copy(Y)
J = geodesic_erosion(img_auxiliar, Y)
return J
def maxima(img):
height, width = img.shape
img_auxiliar = np.copy(img)
for j in range(0, height):
for i in range(0, width):
if img_auxiliar[j,i] > 0:
img_auxiliar[j,i] = img_auxiliar[j,i] - 1
img_auxiliar = geodesic_dilation(img, img_auxiliar)
img = img - img_auxiliar
img = f.threshold(img, 1)
return img
def minima(img):
img_auxiliar = np.copy(img)
img_auxiliar = f.negative_gray(img_auxiliar)
img_auxiliar = maxima(img_auxiliar)
# img_auxiliar = f.negativoGrises(img_auxiliar)
return img_auxiliar
def watershed(ime):
height, width = ime.shape
fp = np.copy(ime)
gp = np.copy(ime)
ims = np.copy(ime) # watershed
mask = minima(ime) # minimos de ime
imwl = etiquetado(mask) # vertientes
# cv2.imshow("etiq", mask)
imwl[0,:] = 1000000
imwl[:,0] = 1000000
imwl[height-1,:] = 1000000
imwl[:,width-1] = 1000000
lista = []
for i in range(0, 256):
lista.append(i)
# # fifo jerarquica
fifoj = {key: [] for key in lista}
for j in range(1, height-1):
for i in range(1, width-1):
if imwl[j,i] != 0:
ban_ = 255
for k in range(j-1, j+2):
for l in range(i-1, i+2):
ban_ = ban_ & imwl[k,l]
if ban_ == 0:
fifoj[ime[j,i]].append([j,i])
i = 0
while(i!=256):
while(bool(fifoj[i]) is True):
coord = fifoj[i].pop(0)
for k in range(coord[0]-1, coord[0]+2):
for l in range(coord[1]-1, coord[1]+2):
if imwl[k,l] == 0:
for n in range(k-1, k+2):
for m in range(l-1, l+2):
if imwl[n,m] != imwl[coord[0],coord[1]] and imwl[n,m] != 0 and imwl[n,m] != 1000000:
ims[k,l] = 255
imwl[k,l] = imwl[coord[0],coord[1]]
fifoj[ime[k,l]].append([k,l])
i = i + 1
return ims, imwl
def etiquetado(img):
imgAuxiliar = np.copy(img)
img2 = np.copy(img)
height, width = img.shape
k = 0
l = 10
fifo = []
lista = []
for i in range(0, 3000):
lista.append(i)
# # fifo jerarquica
fifoj = {key: 0 for key in lista}
imgAuxiliar[0,:] = 0
imgAuxiliar[:,0] = 0
imgAuxiliar[height-1,:] = 0
imgAuxiliar[:,width-1] = 0
for j in range(0, height):
for i in range(0, width):
if imgAuxiliar[j,i] != 0:
k = k + 1
l = l + 1
fifo.append([j,i])
imgAuxiliar[j,i] = 0
img2[j,i] = k
fifoj[k] += 1
while(fifo):
primas = fifo.pop(0)
for n in range(primas[0] - 1, primas[0] + 2):
for m in range(primas[1] - 1, primas[1] + 2):
if imgAuxiliar[n,m] != 0:
fifo.append([n,m])
imgAuxiliar[n,m] = 0
img2[n,m] = k
fifoj[k] += 1
return img2