We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
import pandas as pd series1 = pd.DataFrame( [(0, "s2", pd.Period(2022)), (0, "s1", pd.Period(2021))], columns=["A", "B", "C"] ).set_index(["A", "B"])["C"] series2 = series1.astype(str) print(series1.unstack("B").reindex(["s2"], axis=1)) print(series2.unstack("B").reindex(["s2"], axis=1))
The example code prints
B s2 A 0 2021 B s2 A 0 2022
The result with pd.Period data is the incorrect 2021, but with str data it's the correct 2022.
pd.Period
str
This only occurs with certain index values. When replacing "s1" with "s3", the effect disappears and the result is 2022 in both cases.
Expect the result for both pd.Period and str data to be 2022:
B s2 A 0 2022 B s2 A 0 2022
(actually observed with older Pandas 2.0.3)
commit : 0691c5c python : 3.11.10 python-bits : 64 OS : Linux OS-release : 6.2.16 Version : #1-NixOS SMP PREEMPT_DYNAMIC Tue Jan 1 00:00:00 UTC 1980 machine : x86_64 processor : byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 2.2.3 numpy : 2.2.3 pytz : 2025.1 dateutil : 2.9.0.post0 pip : 24.0 Cython : None sphinx : None IPython : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : None lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : None pymysql : None pyarrow : None pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2025.1 qtpy : None pyqt5 : None
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
The example code prints
The result with
pd.Period
data is the incorrect 2021, but withstr
data it's the correct 2022.This only occurs with certain index values. When replacing "s1" with "s3", the effect disappears and the result is 2022 in both cases.
Expected Behavior
Expect the result for both
pd.Period
andstr
data to be 2022:(actually observed with older Pandas 2.0.3)
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.11.10
python-bits : 64
OS : Linux
OS-release : 6.2.16
Version : #1-NixOS SMP PREEMPT_DYNAMIC Tue Jan 1 00:00:00 UTC 1980
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.2.3
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 24.0
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.1
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: