forked from MattVitelli/GRUV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_files.py
197 lines (181 loc) · 6.47 KB
/
parse_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import scipy.io.wavfile as wav
import numpy as np
from pipes import quote
from config import nn_config
def convert_mp3_to_wav(filename, sample_frequency):
ext = filename[-4:]
if(ext != '.mp3'):
return
files = filename.split('/')
orig_filename = files[-1][0:-4]
orig_path = filename[0:-len(files[-1])]
new_path = ''
if(filename[0] == '/'):
new_path = '/'
for i in xrange(len(files)-1):
new_path += files[i]+'/'
tmp_path = new_path + 'tmp'
new_path += 'wave'
if not os.path.exists(new_path):
os.makedirs(new_path)
if not os.path.exists(tmp_path):
os.makedirs(tmp_path)
filename_tmp = tmp_path + '/' + orig_filename + '.mp3'
new_name = new_path + '/' + orig_filename + '.wav'
sample_freq_str = "{0:.1f}".format(float(sample_frequency)/1000.0)
cmd = 'lame -a -m m {0} {1}'.format(quote(filename), quote(filename_tmp))
os.system(cmd)
cmd = 'lame --decode {0} {1} --resample {2}'.format(quote(filename_tmp), quote(new_name), sample_freq_str)
os.system(cmd)
return new_name
def convert_flac_to_wav(filename, sample_frequency):
ext = filename[-5:]
if(ext != '.flac'):
return
files = filename.split('/')
orig_filename = files[-1][0:-5]
orig_path = filename[0:-len(files[-1])]
new_path = ''
if(filename[0] == '/'):
new_path = '/'
for i in xrange(len(files)-1):
new_path += files[i]+'/'
new_path += 'wave'
if not os.path.exists(new_path):
os.makedirs(new_path)
new_name = new_path + '/' + orig_filename + '.wav'
cmd = 'sox {0} {1} channels 1 rate {2}'.format(quote(filename), quote(new_name), sample_frequency)
os.system(cmd)
return new_name
def convert_folder_to_wav(directory, sample_rate=44100):
for file in os.listdir(directory):
fullfilename = directory+file
if file.endswith('.mp3'):
convert_mp3_to_wav(filename=fullfilename, sample_frequency=sample_rate)
if file.endswith('.flac'):
convert_flac_to_wav(filename=fullfilename, sample_frequency=sample_rate)
return directory + 'wave/'
def read_wav_as_np(filename):
data = wav.read(filename)
np_arr = data[1].astype('float32') / 32767.0 #Normalize 16-bit input to [-1, 1] range
#np_arr = np.array(np_arr)
return np_arr, data[0]
def write_np_as_wav(X, sample_rate, filename):
Xnew = X * 32767.0
Xnew = Xnew.astype('int16')
wav.write(filename, sample_rate, Xnew)
return
def convert_np_audio_to_sample_blocks(song_np, block_size):
block_lists = []
total_samples = song_np.shape[0]
num_samples_so_far = 0
while(num_samples_so_far < total_samples):
block = song_np[num_samples_so_far:num_samples_so_far+block_size]
if(block.shape[0] < block_size):
padding = np.zeros((block_size - block.shape[0],))
block = np.concatenate((block, padding))
block_lists.append(block)
num_samples_so_far += block_size
return block_lists
def convert_sample_blocks_to_np_audio(blocks):
song_np = np.concatenate(blocks)
return song_np
def time_blocks_to_fft_blocks(blocks_time_domain):
fft_blocks = []
for block in blocks_time_domain:
fft_block = np.fft.fft(block)
new_block = np.concatenate((np.real(fft_block), np.imag(fft_block)))
fft_blocks.append(new_block)
return fft_blocks
def fft_blocks_to_time_blocks(blocks_ft_domain):
time_blocks = []
for block in blocks_ft_domain:
num_elems = block.shape[0] / 2
real_chunk = block[0:num_elems]
imag_chunk = block[num_elems:]
new_block = real_chunk + 1.0j * imag_chunk
time_block = np.fft.ifft(new_block)
time_blocks.append(time_block)
return time_blocks
def convert_wav_files_to_nptensor(directory, block_size, max_seq_len, out_file, max_files=20, useTimeDomain=False):
files = []
for file in os.listdir(directory):
if file.endswith('.wav'):
files.append(directory+file)
chunks_X = []
chunks_Y = []
num_files = len(files)
if(num_files > max_files):
num_files = max_files
for file_idx in xrange(num_files):
file = files[file_idx]
print 'Processing: ', (file_idx+1),'/',num_files
print 'Filename: ', file
X, Y = load_training_example(file, block_size, useTimeDomain=useTimeDomain)
cur_seq = 0
total_seq = len(X)
print total_seq
print max_seq_len
while cur_seq + max_seq_len < total_seq:
chunks_X.append(X[cur_seq:cur_seq+max_seq_len])
chunks_Y.append(Y[cur_seq:cur_seq+max_seq_len])
cur_seq += max_seq_len
num_examples = len(chunks_X)
num_dims_out = block_size * 2
if(useTimeDomain):
num_dims_out = block_size
out_shape = (num_examples, max_seq_len, num_dims_out)
x_data = np.zeros(out_shape)
y_data = np.zeros(out_shape)
for n in xrange(num_examples):
for i in xrange(max_seq_len):
x_data[n][i] = chunks_X[n][i]
y_data[n][i] = chunks_Y[n][i]
print 'Saved example ', (n+1), ' / ',num_examples
print 'Flushing to disk...'
mean_x = np.mean(np.mean(x_data, axis=0), axis=0) #Mean across num examples and num timesteps
std_x = np.sqrt(np.mean(np.mean(np.abs(x_data-mean_x)**2, axis=0), axis=0)) # STD across num examples and num timesteps
std_x = np.maximum(1.0e-8, std_x) #Clamp variance if too tiny
x_data[:][:] -= mean_x #Mean 0
x_data[:][:] /= std_x #Variance 1
y_data[:][:] -= mean_x #Mean 0
y_data[:][:] /= std_x #Variance 1
np.save(out_file+'_mean', mean_x)
np.save(out_file+'_var', std_x)
np.save(out_file+'_x', x_data)
np.save(out_file+'_y', y_data)
print 'Done!'
def convert_nptensor_to_wav_files(tensor, indices, filename, useTimeDomain=False):
num_seqs = tensor.shape[1]
for i in indices:
chunks = []
for x in xrange(num_seqs):
chunks.append(tensor[i][x])
save_generated_example(filename+str(i)+'.wav', chunks,useTimeDomain=useTimeDomain)
def load_training_example(filename, block_size=2048, useTimeDomain=False):
data, bitrate = read_wav_as_np(filename)
x_t = convert_np_audio_to_sample_blocks(data, block_size)
y_t = x_t[1:]
y_t.append(np.zeros(block_size)) #Add special end block composed of all zeros
if useTimeDomain:
return x_t, y_t
X = time_blocks_to_fft_blocks(x_t)
Y = time_blocks_to_fft_blocks(y_t)
return X, Y
def save_generated_example(filename, generated_sequence, useTimeDomain=False, sample_frequency=44100):
if useTimeDomain:
time_blocks = generated_sequence
else:
time_blocks = fft_blocks_to_time_blocks(generated_sequence)
song = convert_sample_blocks_to_np_audio(time_blocks)
write_np_as_wav(song, sample_frequency, filename)
return
def audio_unit_test(filename, filename2):
data, bitrate = read_wav_as_np(filename)
time_blocks = convert_np_audio_to_sample_blocks(data, 1024)
ft_blocks = time_blocks_to_fft_blocks(time_blocks)
time_blocks = fft_blocks_to_time_blocks(ft_blocks)
song = convert_sample_blocks_to_np_audio(time_blocks)
write_np_as_wav(song, bitrate, filename2)
return