
Appendix of Adaptive Calibration: A Unified Conversion Framework
of Spiking Neural Networks

Ziqing Wang1, 2*, Yuetong Fang1*, Jiahang Cao1, Hongwei Ren1, Renjing Xu1†

1The Hong Kong University of Science and Technology (Guangzhou), China
2Northwestern University, USA

ziqingwang2029@u.northwestern.edu,
{yfang870, jcao248, hren066}@connect.hkust-gz.edu.cn, renjingxu@hkust-gz.edu.cn

Energy Evaluation
Design of Energy Estimator
For assessing SNNs’ energy consumption for Pareto-
frontier driven search, we draw upon established method-
ologies (Wang et al. 2023; Ding et al. 2021; Cao, Chen, and
Khosla 2015), calculating energy based on the total number
of spikes and their associated energy cost per spike, µ Joules:

E =
total spikes
1× 10−3

× µ (in Watts) (1)

Theoretical Energy Consumption in Experiments
In the experimental section of our paper, we employ energy
consumption as the metric for evaluating efficiency. This
appendix delineates the methodology used to compute the
theoretical energy consumption associated with our SNNs
architecture. The computation process encompasses two pri-
mary phases: identifying the synaptic operations (SOPs) for
each architectural component and estimating the cumulative
energy consumption predicated on these operations.

Synaptic operations within each block of the SNN are calcu-
lated using the equation:

SOPs(l) = fr × T × FLOPs(l) (2)

where l represents the block’s ordinal number in the SNN,
fr signifies the firing rate of the block’s input spike train, T
denotes the neuron’s time step, and FLOPs(l) refers to the
block’s floating-point operations, encapsulating the count of
multiply-and-accumulate (MAC) operations. Herein, SOPs
quantify the spike-based accumulation (AC) operations.

To ascertain the SNN’s theoretical energy expenditure, we
posit the implementation of MAC and AC operations on 45
nm technology, entailing energy costs of EMAC = 4.6 pJ and
EAC = 0.9 pJ, respectively. Following the methodologies
delineated in (Cao et al. 2024; Yao et al. 2023), the formula
for computing the SNN’s theoretical energy consumption is

*These authors contributed equally.
†Corresponding Author

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Pearson: -0.966
Spearman: -0.984
Kendall: -0.903

Figure 1: Illustration of the Inverse Relationship between
Accuracy and Sensitivity. This figure details the layer-
specific parameter settings and their impact on model perfor-
mance. Sensitivity values are plotted on the x-axis against
the corresponding performance metrics on the y-axis. The
demonstrated negative correlation highlights that configura-
tions with lower sensitivity tend to yield higher performance.

as follows:

ESNN = EMAC × FLOP1
SNNConv

+ EAC ×

(
N∑

n=2

SOPn
SNNConv

+
M∑

m=1

SOPm
SNNFC

)
(3)

Here, N and M denote the total count of convolutional
(Conv) and fully connected (FC) layers, respectively. EMAC

and EAC represent the energy costs per operation for MAC
and AC, respectively. FLOPSNNConv

pertains to the FLOPs
of the initial Conv layer, while SOPSNNConv and SOPSNNFC

refer to the SOPs for the nth Conv and mth FC layers, re-
spectively.

Performance Evaluation
Design of Performance Estimator
In the body of our paper, we introduced the concept of sen-
sitivity to evaluate the performance of Spiking Neural Net-
works (SNNs). This appendix aims to further elucidate and
expand upon the inverse relationship between sensitivity and



SNN performance, a foundational aspect of our findings.
Herein, we delve into the quantitative analysis that substanti-
ates this relationship, utilizing Kullback-Leibler (KL) diver-
gence as our primary tool for measuring layer sensitivity.

Kullback-Leibler (KL) divergence, a statistical measure for
gauging the difference between two probability distributions,
serves as our metric for assessing the disparity in output
distributions between Artificial Neural Networks (ANNs) and
SNNs configurations across each neural layer. The sensitivity
of a given layer i with respect to parameter k is expressed
mathematically as:

Si(k) =
1

N

N∑
j=1

KL (M (ANNi;xj) ,M (SNNi(k);xj))

(4)
where N denotes the number of inputs xj assessed. A lower
Si(k) signifies that the output of the SNN model closely
mirrors that of the ANN model for the specified layer and
parameter, indicating reduced sensitivity to parameter varia-
tions and, consequently, higher model performance.

Fig. 1 showcases the empirical relationship between layer
sensitivity and overall SNN performance. By plotting sen-
sitivity values against performance metrics for various con-
figurations, we observe a pronounced negative correlation
(Pearson coefficient = -0.966, p < 10−122; Spearman coef-
ficient = -0.984, p < 10−156; Kendall coefficient = -0.903,
p < 10−77). This observation is pivotal, as it underscores the
principle that diminishing sensitivity strongly correlates with
the performance of SNNs.

Conversion Errors in ANN-to-SNN Conversion
The performance gap between ANNs and SNNs can largely
be attributed to three main conversion errors: clipping error,
quantization error, and unevenness error (Bu et al. 2021a;
Hao et al. 2023a,b). These errors arise during the process
of converting continuous values in ANNs to discrete spike-
based representations in SNNs.

Clipping Error
Clipping error occurs due to the different ranges in ANNs
and SNNs. In ANNs, outputs are continuous, while in SNNs,
they are discrete. Clipping error arises when high values in
ANNs are mapped to a single maximum value in SNNs.

Quantization Error
Quantization error results from mapping continuous ANN
values to discrete SNN values. This error occurs because each
continuous interval in ANNs is mapped to a fixed discrete
value in SNNs.

Unevenness Error
Unevenness error is caused by the irregular timing of spikes
in SNNs, leading to deviations from expected output values.
This happens when spike arrival times vary, affecting the
number of spikes received by neurons in deeper layers.

Upon analyzing these errors, we find that unevenness error
is the most significant contributor to the performance gap.
Therefore, our method primarily targets the reduction of this
error to enhance the overall accuracy and efficiency of SNNs.

Theoretical Analysis of SNN Calibration
In SNNs, inputs are transmitted through the neuronal units,
typically the Integrate-and-Fire (IF) spiking neuron in ANN-
to-SNN conversions (Ding et al. 2021; Li et al. 2021a; Bu
et al. 2021b):

u(ℓ)(t+ 1) = v(ℓ)(t) +W (ℓ)s(ℓ)(t) (5)

v(ℓ)(t+ 1) = u(ℓ)(t+ 1)− s(ℓ+1)(t) (6)

s(ℓ+1)(t) =

{
V

(ℓ)
th if u(ℓ)(t+ 1) ≥ V

(ℓ)
th

0 otherwise
(7)

where u(ℓ)(t+1) denotes the membrane potential of neurons
before spike generation, v(ℓ)(t+ 1) denotes the membrane
potential of neurons in layer ℓ at time step t+1, corresponding
to the linear transformation matrix W ℓ, the threshold V

(ℓ)
th ,

and binary input sℓ(t) of layer ℓ.

The fundamental principle of ANN-to-SNN conversion is
to ensure that the converted SNN closely approximates the
input-output function mapping of the original ANN:

x(ℓ) ≈ s(ℓ) =
1

T

T∑
t=0

s(ℓ)(t) (8)

where x(ℓ) represents the activation input of the ANN model,
and s(ℓ) denotes the averaged binary input over T timesteps
in the converted SNN. It is important to note that this approx-
imation becomes valid only as T approaches infinity.

To address this limitation, Li et al.(Li et al. 2021b) intro-
duced a layer-wise Calibration algorithm that minimizes the
discrepancy between the outputs of the original ANN and the
converted SNN.

We first establish the relationship between s(ℓ) and s(ℓ+1).
Assuming an initial membrane potential v(ℓ)(0) = 0, by
substituting Eq. 3 into Eq. 4 and summing over T , we obtain:

v(ℓ)(T ) = W (ℓ)

(
T∑

t=0

s(ℓ)(t)

)
−

T∑
t=0

s(ℓ+1)(t) (9)

At each time step, the output can be either 0 or V (ℓ)
th . There-

fore, the accumulated output
∑T

t=0 s
(ℓ+1)(t) can be written

as mV
(ℓ)
th , where m ∈ 0, 1, . . . , T denotes the total number

of spikes. Assuming that the terminal membrane potential
v(ℓ)(T ) lies within the range

[
0, V

(ℓ)
th

)
, we have:

TW (ℓ)s(ℓ) − V
(ℓ)
th < mV

(ℓ)
th ≤ TW (ℓ)s(ℓ) (10)

Given this, we can determine m using the floor and clip
operations:

m = Clip

(⌊
T

V
(ℓ)
th

W (ℓ)s(ℓ)

⌋
, 0, T

)
(11)



The clip function sets an upper bound T and a lower bound
of 0, while the floor function ⌊x⌋ returns the greatest integer
less than or equal to x. The expected output spike can then
be calculated as:

s(ℓ+1) = ClipF loor
(
W (ℓ)s(ℓ), T, V

(ℓ)
th

)
=

V
(ℓ)
th

T
Clip

(⌊
T

V
(ℓ)
th

W (ℓ)s(ℓ)

⌋
, 0, T

)
(12)

Then SNN Calibration optimizes the threshold of spiking
neurons using Eq.12:

min
Vth

(
ClipF loor

(
s(ℓ+1), T, V

(ℓ)
th

)
−ReLU

(
s(ℓ+1)

))2
(13)

Moreover, to align the outputs of ANNs and SNNs, SNN
Calibration incorporates the expected conversion errors into
the bias terms:

b
(ℓ)
i = b

(ℓ)
i + µi

(
e(ℓ+1)

)
(14)

where µi

(
e(ℓ+1)

)
computes the mean error between the

ANN and SNN outputs in the ith channel.

In our work, we adopt the SNN Calibration framework to re-
duce the need for re-training. However, previous studies have
neglected the energy efficiency of the converted SNNs and
require extended inference timesteps to achieve performance
comparable to directly trained SNNs. To address these issues,
we propose an Adaptive Calibration method as a unified
framework that enhances both performance and efficiency.

Pareto-frontier driven Search Algorithm of
Adaptive Calibration

Motivation
To achieve an optimal balance between performance and en-
ergy consumption in our model, we utilize a Pareto-frontier
driven Search Algorithm. This approach is driven by the need
to simultaneously optimize two conflicting objectives: mini-
mizing energy consumption and maximizing model perfor-
mance. In our framework, performance is quantified through
layer-wise sensitivity, which serves as a surrogate for direct
performance metrics.

The search process is divided into two key components, each
leveraging the Pareto frontier:

1. Max Firing Pattern Search: Given a fixed energy budget
Etarget, we search for the combination of firing patterns φ
across layers that minimizes the total layer-wise sensitiv-
ity Ssum. This process allows us to find the optimal con-
figuration that maximizes performance within the energy
constraints, effectively moving along the Pareto frontier
to identify the best trade-off point.

2. Threshold Ratio Search: In the second stage, we focus
on reducing energy consumption further. Given a fixed
sensitivity threshold Starget, we search for the combination

of threshold amplification factors ρ across layers that min-
imize energy consumption Esum. By doing so, we identify
the configuration that achieves the desired performance
while minimizing energy use, again optimizing along the
Pareto frontier.

Both components of the algorithm are designed to ensure
that the model’s performance and energy consumption are
optimally balanced, providing a robust solution that meets
the specified constraints for either sensitivity or energy. This
approach allows for a systematic exploration of the trade-
offs between performance and energy, ensuring that the final
model configuration is both efficient and effective.

Analysis of Search Space
Defining the search space is a critical step in optimizing both
the firing patterns φ and threshold ratios ρ across the layers of
the model. The search space for each component is outlined
as follows:

Max Firing Pattern Search Space To identify the opti-
mal firing pattern φ for each layer, we first establish a target
energy budget Etarget, which corresponds to the energy con-
sumption when all layers adopt the target φ. The search space
for φ is defined as follows:

• The minimum firing pattern count minφ is set to 1 (or 2
for the ImageNet dataset to ensure stability).

• The maximum firing pattern count maxφ is set to twice
the value of the target φ, providing a broad range for
optimization.

This search space allows for a comprehensive exploration
of possible configurations, ensuring that the algorithm can
identify the optimal φ for each layer under the given energy
constraints.

Threshold Ratio Search Space For the threshold ratio ρ,
which aims to minimize energy consumption under a fixed
sensitivity threshold Starget, the search space is defined as
follows:

• The minimum threshold amplification factor min ρ is set
to 1, representing the baseline configuration.

• The maximum threshold amplification factor max ρ is set
to 10, with incremental steps of 0.5 to provide fine-grained
control over the compression process.

This search space is designed to allow the algorithm to ex-
plore various configurations that balance energy savings with
the preservation of model accuracy.

Pseudo-code
The optimization process for determining the optimal maxi-
mum firing pattern φ utilizes a dynamic programming-based
approach, inspired by the method proposed by Cai et al.
(2020). The optimization of the threshold ratio ρ follows
a similar method, with a different target function correspond-
ing to energy minimization under a fixed sensitivity threshold.
The pseudo-code for this optimization process is presented
in Algorithm 1.



Algorithm 1: Pareto Frontier Driven Search Algorithm
Input :Training data train loader, AdaFire model

model, configuration range φ range, energy
budget Etarget

Output :Optimal configuration optimal phi

// Initialize model for ANN mode to compute baseline
model.set mode(ANN);
model.eval();
for each (input, target) in train loader do

input = input.to(device=model.device);
target = target.to(device=model.device);
gt output = model(input);
break; // Only need one batch for

baseline

// Sensitivity and energy analysis for each layer
configuration in SNN mode

for each layer i in model.layers do
for each configuration φ in φ range do

model.layers[i].set configuration(φ);
model.set mode(SNN);
output = model(input);
kl div = symmetric kl(F .softmax(output,
dim=1), F .softmax(gt output, dim=1));
spike count = model.layers[i].spike counter;

// Pareto frontier search for optimal configuration
Initialize root node with cost 0 and profit 0;
current list = [root];
for each layer layer id do

next list = [];
for each node n in current list do

for each configuration φ in φ range do
new cost =
n.cost+ energy result[layer id][φ];

new profit =
n.profit+ sen result[layer id][φ];

// Create new node with updated cost and
profit

new node = Node(new cost, new profit,
configuration=φ, parent=n);

next list.append(new node);

// Prune nodes based on cost and profit
next list.sort(key=lambda x: x.cost);
current list = prune nodes(next list,

constraint=Etarget);

// Retrieve the best configuration
best node = min(current list, key=lambda node:

node.profit);
optimal phi = trace back config(best node);

return optimal phi // Return the optimal
configuration that minimizes
sensitivity

Results and Analysis
The results of the optimization process for both the firing
pattern φ and the threshold ratio ρ are presented in Tables 1

and 2, respectively. These results highlight the effectiveness
of the Pareto-frontier driven search in achieving a balanced
trade-off between energy and performance.

Firing Pattern Search Results Table 1 displays the op-
timal firing pattern configurations for the CIFAR-10/100
datasets. The allocation of higher φ values in the initial and
final layers underscores the importance of these layers in
feature extraction and classification. The gradual reduction
in resolution as the network deepens allows for moderate
increases in φ values in later layers, optimizing energy con-
sumption without significantly affecting overall performance.

Threshold Ratio Search Results Table 2 shows the opti-
mal threshold amplification factors ρ for the CIFAR-10/100
datasets. The strategic selection of ρ values, with lower val-
ues in the initial layers and higher values in the final layers,
reflects an adaptive approach to compression. This approach
ensures that energy consumption is minimized while main-
taining model accuracy. The higher ρ values in the final layers,
particularly for CIFAR-10, indicate a tolerance for more ag-
gressive compression in these layers, allowing for significant
energy savings without compromising performance.

Comparison of AdaFire and BurstFire To further val-
idate the effectiveness of the optimized firing patterns,
we compare our Adaptive-Firing Neuron Model (AdaFire),
which utilizes the optimal configurations derived from the
Pareto-frontier driven search, with the conventional Burst-
Firing Neuron Model (BurstFire), where each layer uniformly
adopts the target firing pattern φ.

As shown in Figure 2, AdaFire consistently outperforms
BurstFire, particularly in low timestep settings. For instance,
Figure 2b demonstrates a notable performance gain of 2.45%
at a timestep of 8 on the ResNet34 architecture. These results
highlight the advantages of our adaptive approach in tailor-
ing firing patterns to the specific sensitivities of each layer,
leading to enhanced accuracy and efficiency compared to the
static approach of BurstFire.

Summary of Results In summary, the Pareto-frontier
driven Search Algorithm effectively balances the conflict-
ing objectives of energy and performance, providing a robust
framework for optimizing both firing patterns and threshold
ratios across different layers of the model. The comparison
between the AdaFire and BurstFire models further under-
scores the advantages of an adaptive approach, demonstrat-
ing superior accuracy and efficiency in the AdaFire model,
particularly under low timestep constraints.

Input-aware Adaptive Timesteps
The efficiency and performance of SNNs are significantly im-
pacted by the number of computational timesteps (T ) during
operation. Traditionally, T has been a fixed hyperparameter,
leading to a trade-off: increasing T can enhance accuracy
at the cost of higher computational latency. This trade-off is
evident in the performance of spiking ResNet architectures
on the CIFAR-10 dataset across different timesteps.



8 16 32 64
Timestep

72.5

73.0

73.5

74.0

74.5

75.0

A
cc

ur
ac

y 
(%

)

AdaFire
BurstFire

(a) VGG-16

8 16 32 64
Timestep

71

72

73

74

75

A
cc

ur
ac

y 
(%

)

AdaFire
BurstFire

(b) ResNet-34

Figure 2: Effectiveness of AdaFire Neuron Model. Compared with the BurstFire method, our method can largely improve
performance on both VGG16 and ResNet34 in the ImageNet dataset, especially at low timestep.

Table 1: Adaptive-firing Neuron Model Configuration Search Results for CIFAR datasets. Target φ is set to 4.

Dataset Layer Number (φ Value)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CIFAR-10 7 5 3 1 3 3 4 4 6 5 5 2 7 7 7 7 8 8 5
CIFAR-100 8 3 4 1 4 1 4 8 6 4 6 3 6 8 8 8 8 8 8

Table 2: Sensitivity Spike Compression (SSC) Search Results for CIFAR datasets

Dataset Layer Number (ρ Value)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CIFAR-10 1.0 1.5 1.0 3.5 1.5 2.0 1.5 1.0 2.5 2.0 2.0 2.5 1.5 2.5 1.5 1.5 3.5 4.5 10.0
CIFAR-100 1.0 1.0 1.0 3.0 1.5 2.0 2.0 1.5 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.5 1.5 2.5 6.0

Motivation of Adaptive Timestep Strategy
Our analysis (see Fig. 3) reveals the inherent trade-off be-
tween accuracy and latency in fixed timestep configurations.
For instance, increasing the timestep count from 4 to 8 boosts
top-1 accuracy by only 0.4%, while doubling the computa-
tional time. This observation suggests that many inputs do
not require the maximum number of timesteps for correct
classification, highlighting the potential for efficiency gains
through a more adaptive approach.

Building on this insight, we propose an adaptive timestep
technique that dynamically adjusts T based on the complexity
of each input. By defining a difficulty factor for each image,
the SNN can determine the necessary number of timesteps
(t) for accurate classification, thereby reducing redundant
computations for simpler inputs. This approach is grounded
in the following assumption:

Monotonic Correctness Assumption: If an SNN can accu-
rately predict an input x within t timesteps (t ≤ T ), it will

continue to do so for any t′ ≥ t, up to T .

This assumption guarantees that once an accurate classifi-
cation is achieved at a specific timestep, any computations
beyond that point up to T will not affect the outcome. Deter-
mining the earliest t for precise prediction enables the elim-
ination of superfluous computations, thereby significantly
enhancing network efficiency while preserving accuracy.

Implementation
The implementation of the input-aware adaptive timestep
technique involves creating a mechanism within the SNN to
evaluate the complexity of each input in real-time and adjust
T accordingly. Unlike previous approaches that use a single
fixed threshold α across all timesteps, our method considers
the unique impact of each timestep on the network’s final
accuracy. Analyzing the entropy distribution across timesteps
for the training dataset reveals significant variances, under-
scoring the limitation of a uniform threshold. This leads to the



2 4 6 8
Timestep

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

A
cc

ur
ac

y 
(%

)

=0.8=0.85
=0.9

=0.95
=0.99

w/ IAT
Fixed T

(a) ImageNet

2 4 6 8
Timestep

95.2

95.4

95.6

95.8

96.0

96.2

96.4

96.6

A
cc

ur
ac

y 
(%

)

=0.7
=0.8
=0.9

=0.99

w/ IAT
Fixed T

(b) CIFAR-10

Figure 3: Effectiveness of IAT method. Compared with the baseline SNN with fixed timesteps, our method can largely reduce
the latency while achieving higher performance.

development of our input-aware adaptive timestep technique,
which sets a dynamic threshold of confidence scores at each
timestep. In the body of the paper, we design the threshold of
confidence score at each timestep by the following formula:

αt = αbase + βe−
Ēt−Ēmin

δ (15)

where αbase is the base threshold, β is the scaling factor, δ
represents the decay constant, Ēt denotes the average entropy
of the network’s output distribution at timestep t, and Ēmin

the minimum average entropy observed across all timesteps.

By configuring β to 1− αbase and δ to 1, the dynamic range
of αt effectively spans from αbase to 1. This configuration
allows for a flexible and responsive adaptation of the con-
fidence threshold based on the entropy observed at each
timestep, optimizing the SNN’s computational efficiency by
customizing timesteps to the complexity of each input, thus
reducing unnecessary computations for simpler inputs while
maintaining accuracy for more complex ones.

The pseudo-code for this algorithm is shown in Algorithm 2.

Results and Analysis

As shown in Fig. 3, the application of the IAT technique
significantly reduces inference latency while maintaining or
improving performance. For instance, employing the IAT
technique allows our method to achieve 67.75% accuracy
with only 4.8 timesteps on one dataset, outperforming the
fixed timestep approach by 0.39%. Similarly, on the CIFAR-
10 dataset, the IAT technique achieves 96.61% accuracy with
just 2.5 timesteps, which is 0.42% higher than the SNN
with three fixed timesteps. These examples demonstrate that
our method effectively reduces latency and enhances perfor-
mance simultaneously.

Algorithm 2: Input-aware Adaptive Timesteps
Input :Pretrained ANN, training samples, test dataset,

αbase, β, δ
Output :Test accuracy, Acctest

// Calibration and setup
for each layer i = 1 to n in the ANN do

Calibrate parameters of layer i using training
samples.

// Compute baseline for adaptive thresholding
for each timestep t = 1 to T do

Compute Ēt, the average entropy of the network’s
output at timestep t, over the training dataset.

Compute α(t) using the formula:

αt = αbase + βe−
Ēt−Ēmin

δ .

Acctest = 0 // Initialize test accuracy

// Inference, processing images one by one
for each image i in the test dataset do

O = 0 // Initialize accumulated
output

for t = 1 to T do
Ot = ANN(i, t) // Output at

timestep t
O = O +Ot // Accumulate output
H(t) = Entropy(O)
if H(t) > α(t) then

ŷ = argmaxO // Make prediction
break

Update Acctest based on prediction accuracy of ŷ for
image i.

return Acctest // Final test accuracy



Implementation Details
Computer Resources
We use RTX 4090 for training and inference. All the GPU
time evaluations and performance evaluations are on the 4090
server.

Static Classification Datasets
This section details the static image datasets employed in
our study, underscoring their pivotal role in training and
testing our models. These datasets are selected for their di-
verse and comprehensive representation of real-world visual
categories, which is crucial for evaluating the model’s perfor-
mance across a wide range of object classes.

CIFAR-10. Introduced by LeCun et al. (LeCun et al. 1998),
the CIFAR-10 dataset consists of 60,000 32×32 color images
in 10 classes, with 6,000 images per class. The dataset is di-
vided into 50,000 training images and 10,000 testing images.
Classes include vehicles and animals, such as ”truck,” ”car,”
”bird,” and ”cat,” making it a popular choice for evaluating
classification algorithms.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky, Hinton
et al. 2009) is similar in scale to CIFAR-10 but with a finer
classification granularity, featuring 100 classes containing
600 images each. This dataset is split into 50,000 training
and 10,000 testing images, covering a wide array of objects
from ”apple” to ”wolf,” providing a challenging variety for
object recognition tasks.

ImageNet-1k. As curated by Deng et al. (Deng et al. 2009),
the ImageNet-1k dataset is a large-scale collection composed
of approximately 1.28 million training images, 50,000 vali-
dation images, and 100,000 test images, spread across 1000
object classes. Its extensive variety and volume make it a
benchmark for evaluating advanced image classification mod-
els.

Preprocessing Details. Prior to training, we apply several
data augmentation techniques to enhance the diversity of the
training sets. Specifically, we employ random cropping with
a crop size of 224×224 pixels for ImageNet-1k and 32×32
for CIFAR datasets, and a 50% chance of horizontal flipping
across all datasets. Data normalization is conducted using
the dataset-specific mean and variance values to standard-
ize the input images to zero mean and unit variance. These
preprocessing steps are critical for mitigating overfitting and
enhancing the model’s ability to generalize from the training
data to unseen images.

Event-driven Classification Datasets
This subsection delves into datasets tailored for neuromorphic
computing, emphasizing their event-driven nature. Unlike tra-
ditional static images, event-driven sensors capture changes
in illumination per pixel, providing a dynamic and tempo-
ral perspective of the scene. This characteristic makes them
particularly suited for tasks requiring temporal information

processing, such as action recognition and dynamic scene
analysis.

CIFAR10-DVS. Developed by Li et al. (Li et al. 2017),
the CIFAR10-DVS dataset transforms the classic CIFAR-
10 dataset into an event-based format using a Dynamic Vi-
sion Sensor (DVS). It includes 10,000 event-based images
across 10 classes at a resolution of 128×128 pixels, divided
into 9,000 training and 1,000 test samples. This dataset en-
ables the exploration of neuromorphic approaches in recog-
nizing static image categories within a dynamic, event-driven
paradigm.

N-Caltech101. The N-Caltech101 dataset, introduced by
Orchard et al. (Orchard et al. 2015), consists of 8,831 event-
based representations of the original Caltech101 dataset, cap-
tured at a resolution of 180×240 pixels across 101 classes.
By converting static images into an event-based format, this
dataset challenges models to maintain high classification per-
formance in a more complex, temporally rich input space.

N-Cars. Sironi et al. (Sironi et al. 2018) created the N-Cars
dataset, which comprises 24,029 event-based images at a
resolution of 100×120 pixels, categorized into car and back-
ground classes. The dataset is split into 15,422 training sam-
ples (7,940 cars and 7,482 background samples) and 8,607
test samples (4,396 cars and 4,211 background samples).
This dataset is particularly useful for binary classification
tasks within the neuromorphic computing domain, focusing
on vehicle detection in dynamic environments.

Action Recognition. The Action Recognition dataset by
Miao et al. (Miao et al. 2019) features 10 action classes
at a 346×260 resolution. It includes diverse actions such as
arm-crossing, getting up, and waving, with 30 recordings per
class. To accommodate the dataset’s limited size, the Sur-
face of Active Events (SAE) encoding technique is employed
to convert raw data into 4,670 frame images. This dataset
pushes the boundaries of neuromorphic vision by enabling
the study of complex human activities through event-based
sensing.

Preprocessing Details. Given the intrinsic characteristics
and challenges posed by neuromorphic datasets, such as their
limited size and potential for overfitting, specialized data
augmentation techniques are crucial. Following the recom-
mendations of Li et al. (Li et al. 2022), we apply augmen-
tation methods specifically designed for neuromorphic data.
These techniques, including temporal jittering and spatial
transformations, enhance the diversity and robustness of the
training samples. By implementing these targeted prepro-
cessing steps, we aim to bolster the model’s generalization
capabilities, ensuring it does not overfit to the nuances of the
training data but rather learns to perform accurately across
varied neuromorphic inputs.



Object Detection and Semantic Segmentation
Datasets

In the realm of computer vision, object detection and seman-
tic segmentation are pivotal tasks that drive numerous appli-
cations, from autonomous driving to interactive augmented
reality. To benchmark and refine our models for these tasks,
we employ two of the most influential datasets: PASCAL
VOC 2012 and MS COCO 2017. These datasets are not only
vast in their image variety and annotations but also present
unique challenges that push the limits of current computer
vision technologies.

PASCAL VOC 2012. The PASCAL Visual Object Classes
(VOC) 2012 dataset (Everingham et al. 2010) serves as a
fundamental benchmark for object detection and semantic
segmentation. It encompasses over 11,000 images spanning
20 object categories, ranging from people and animals to
vehicles and household items. Each image is meticulously an-
notated with object instance boundaries, facilitating detailed
object detection and precise semantic segmentation tasks.
The dataset’s diversity and complexity make it an essential
tool for evaluating the performance and robustness of com-
puter vision models. PASCAL VOC challenges models with
real-world scenarios, including varied scales, poses, light-
ing conditions, and occlusions, offering insights into their
generalization capabilities and limitations.

MS COCO 2017. The Microsoft Common Objects in Con-
text (COCO) 2017 dataset (Lin et al. 2014) significantly
extends the scope and depth of dataset challenges for object
detection and semantic segmentation. With over 200,000 la-
beled images and 1.5 million object instances across 80 object
categories, MS COCO provides a comprehensive landscape
for training and evaluating advanced models. The dataset is
renowned for its rich annotations, including object segmen-
tation masks, multiple objects per image, and a wide range
of object sizes. Its emphasis on object detection in the con-
text of scene understanding (i.e., identifying objects in their
natural environment with contextual relationships) and the
inclusion of complex, crowded scenes makes it a stringent
testbed for assessing model efficacy in more intricate visual
environments.

Dataset Utilization. For our studies, both PASCAL VOC
2012 and MS COCO 2017 are integral in developing and
testing our object detection and semantic segmentation frame-
works. The datasets’ varied and comprehensive annotations
allow us to train models that are not only precise in identi-
fying and segmenting objects but also robust against a wide
array of real-world visual challenges. To leverage the full
potential of these datasets, we adopt a suite of data augmen-
tation techniques, such as scale augmentation, rotation, and
flipping, to enhance the diversity of the training data. Further-
more, we utilize mean Average Precision (mAP) to ensure
a thorough assessment of model performance across both
datasets.

3D Task Datasets
Our study evaluates the proposed method for 3D point cloud
classification and 3D part segmentation, pivotal tasks in
understanding complex 3D environments. We leverage the
ShapeNet dataset, as detailed by Yi et al. (Yi et al. 2016),
using the PointNet architecture (Qi et al. 2017) as the foun-
dation for our experiments.

3D Point Cloud Classification involves identifying the cate-
gory of a whole object based on its 3D point cloud represen-
tation. PointNet, a groundbreaking neural network, processes
point clouds directly, enabling effective feature extraction
and classification without the need for volumetric representa-
tions. This approach is critical for handling the intricacies of
3D geometric data efficiently.

Part Segmentation represents a more granular task than
classification, aiming to categorize individual components
of an object within a 3D scan or mesh model. As shown
in 4, for example, in a 3D representation of a chair, the task
would involve accurately identifying and segmenting the
chair’s legs, backrest, and other constituent parts. This task
is inherently challenging due to the fine-grained nature of the
segmentation and the complexity of 3D shapes.

ShapeNet Part Dataset. We utilize the ShapeNet part dataset,
which encompasses 16,881 3D shapes across 16 categories,
annotated with 50 distinct parts. This dataset is particularly
suited for evaluating part segmentation methodologies due
to its diverse range of objects and detailed part annotations.
Objects in the dataset are typically labeled with two to five
parts, and ground truth annotations are provided for points
sampled on the objects’ surfaces.

Evaluation Metric. The primary metric for evaluating part
segmentation performance is the mean Intersection over
Union (mIoU) calculated per point. For each object S within
category C, mIoU is computed by assessing the IoU for each
part type within C, between the ground truth and predicted
segmentations. Part IoUs are treated as 1 in cases where both
the ground truth and prediction are empty, ensuring fairness
in evaluation. The mIoU for a shape is obtained by averaging
the IoUs across all part types in its category. Subsequently,
to derive the category’s mIoU, we average the mIoUs for all
shapes within that category.

More Reuslt
Performance on Event-driven Classification
As shown in Tab. 3, we provide more results of our approach
over other leading SNN techniques across various neuromor-
phic datasets within limited timesteps. Our results show that
our approach, enhanced with the AdaFire technique, consis-
tently outperforms other leading SNN models. For instance,
in the domain of Action Recognition which encapsulates se-
quential human actions recorded with event-based cameras,
our model achieves an impressive top-1 accuracy of 88.21%.
These results, markedly better than alternatives, underscore
our method’s adaptability to diverse neuromorphic datasets.



(a) Airplane (b) Lamp (c) Bag
Figure 4: Visualization of Part Segmentation results on the ShapeNet Part dataset.

Table 3: Performance comparison between the proposed model and the state-of-the-art models on different neuromorphic
datasets.

Dataset Model Timesteps Accuracy (%)

N-Cars
CarSNN (Viale et al. 2021)IJCNN 10 86.00

NDA (Li et al. 2022)ECCV 10 91.90
AdaFire (Ours) 8 96.24

Action Recognition
STCA (Gu et al. 2019)IJCAI 10 71.20

Mb-SNN (Liu et al. 2021)IJCAI 10 78.10
AdaFire (Ours) 8 88.21

Table 4: Performance comparison for Semantic Segmentation.

Dataset Method Arch. ANN T mAP

VOC Calibration (Li et al. 2021b)ICML ResNet50 73.36 128 69.11
AdaFire (Ours) ResNet50 73.36 16 72.17

COCO Calibration (Li et al. 2021b)ICML ResNet50 47.34 128 38.23
AdaFire (Ours) ResNet50 47.34 16 45.15

Table 5: Performance comparison for 3D Classification on the ShapeNet dataset.

Method Arch. T Acc.
ANN PointNet / 97.73
Calibration (Li et al. 2021b)ICML PointNet 64 95.89
AdaFire (Ours) PointNet 16 97.52

Table 6: Performance comparison for 3D Part Segmentation on the ShapeNet dataset. Our method uses T = 16 and baseline uses
T= 64.

Method Mean Aero Bag Cap Car Chair Guitar Knife Earphone
ANN 77.46 81.55 78.74 71.87 75.15 89.1 89.22 83.81 69.55

Calibration (Li et al. 2021b) 72.25 74.11 78.07 70.15 62.53 79.48 83.52 77.88 66.97
AdaFire (Ours) 75.65 78.99 78.91 70.89 71.95 88.17 86.03 82.85 67.27

Method Mean Lamp Laptop Motor Mug Pistol Rocket Table Skateboard
ANN 77.46 80.74 94.54 60.95 85.58 80.68 44.94 81.45 71.47

Calibration (Li et al. 2021b) 72.25 76.53 92.45 56.27 78.91 76.58 42.54 76.91 63.1
AdaFire (Ours) 75.65 79.13 92.47 61.64 85.23 80.11 43.16 78.32 65.3



Performance on Semantic Segmentation.
We conducted comprehensive evaluations using two widely
recognized datasets: PASCAL VOC 2012 and MS COCO
2017. Table 4 presents a detailed comparison of our model’s
performance against the Calibration baseline. On the PAS-
CAL VOC dataset, AdaFire achieves a mean Average Preci-
sion (mAP) of 72.17%, surpassing the Calibration baseline
(69.11%) while reducing the number of timesteps from 128
to just 16. This improvement is even more pronounced on
the MS COCO dataset, where AdaFire reaches an mAP of
45.15% compared to the baseline’s 38.23%, again with sig-
nificantly fewer timesteps.

Notably, our model maintains the same architecture
(ResNet50) and ANN performance as the baseline, highlight-
ing that the improvements are due to our AdaFire approach
rather than changes in the underlying network structure. The
substantial reduction in timesteps (from 128 to 16) coupled
with improved accuracy demonstrates AdaFire’s ability to
enhance both efficiency and performance in semantic seg-
mentation tasks.

These results affirm the effectiveness of AdaFire in pushing
the boundaries of SNN capabilities in semantic segmenta-
tion tasks, offering a promising direction for future research
and applications where both accuracy and computational
efficiency are crucial.

Performance on 3D Classification.
We extend the application of SNNs to 3D point cloud classifi-
cation, addressing the growing need for efficient 3D process-
ing in fields such as remote sensing, augmented/virtual reality
(AR/VR), robotics, and autonomous driving. Our evaluation
utilizes the ShapeNet dataset (Yi et al. 2016), employing
PointNet (Qi et al. 2017) as the backbone architecture.

Table 5 provides a comparative analysis of our method
against existing benchmarks. AdaFire achieves an accuracy
of 97.52% with only 16 timesteps, significantly outperform-
ing the Calibration baseline (95.89% with 64 timesteps) and
closely approaching the ANN performance (97.73%). This
result represents a 1.63% improvement over the Calibration
baseline while using just a quarter of the timesteps.

The performance of AdaFire in this 3D classification task is
particularly noteworthy as it demonstrates the potential of
SNNs to handle complex spatial data efficiently. By achiev-
ing near-ANN levels of accuracy with drastically reduced
timesteps, our method showcases the viability of SNNs for
real-world 3D classification applications where both accuracy
and computational efficiency are critical.

Performance on 3D Part Segmentation.
We further extend the application of SNNs to the challenging
domain of 3D Part Segmentation, a task that requires assign-
ing specific part category labels to individual points within
a 3D model. This represents a pioneering effort in applying
SNNs to this nuanced 3D recognition task.

Table 6 presents a comprehensive comparison of our method
against the ANN and Calibration baselines across various ob-

ject categories. AdaFire achieves a mean accuracy of 75.65%
across all categories, significantly outperforming the Cali-
bration baseline (72.25%) and approaching the ANN per-
formance (77.46%). In addition, AdaFire shows substantial
improvements in challenging categories such as Car (71.95%
vs. 62.53% for Calibration), Chair (88.17% vs. 79.48%),
and Motor (61.64% vs. 56.27%). Moreover, these results
are achieved with only 16 timesteps, compared to the 64
timesteps used by the Calibration baseline, highlighting the
efficiency of our approach.

The success of AdaFire in 3D part segmentation, a task re-
quiring a fine-grained understanding of object structure, un-
derscores the potential of SNNs to handle intricate 3D recog-
nition problems effectively. This advancement opens up new
possibilities for applying SNNs in fields such as robotics and
computer vision, where a detailed understanding of object
parts is crucial.

Visualization
In this section, we present visualizations to illustrate the ef-
fectiveness of the Adaptive-Firing (AdaFire) approach in the
context of Object Detection and Semantic Segmentation tasks.
Our objective is to showcase how AdaFire stands in compari-
son to traditional ANNs and the Calibration method (Li et al.
2021b), under conditions designed to maintain equivalent
energy consumption levels for a fair comparison. Specifically,
we configure our method with φ = 4 and T = 16, while for
the Calibration method, T is adjusted to 64, ensuring parity
in energy requirements across both methodologies.

Object Detection Results
The visual results from the object detection task unequivo-
cally demonstrate the superior performance of our AdaFire
approach. It exhibits a remarkable ability to identify a greater
number of objects with heightened confidence levels, signif-
icantly bridging the performance chasm that typically sep-
arates SNNs from their ANN counterparts. This enhanced
detection capability is pivotal for applications requiring high
precision and reliability in object identification under energy-
constrained environments.

Semantic Segmentation Results
In the realm of semantic segmentation, the AdaFire approach
reveals its prowess in capturing intricate edge details, facil-
itating a more comprehensive and accurate delineation of
segmented areas. This capability is especially beneficial for
complex scene parsing where the precise demarcation of
object boundaries is crucial. The improved edge characteriza-
tion afforded by AdaFire translates into segmentation outputs
that are not only closer to the ground truth but also surpass the
granularity achievable by conventional SNN methodologies.

Discussion
Through these visual comparisons, the AdaFire method dis-
tinctly outperforms the Calibration strategy, aligning more
closely with the results obtainable through ANNs while op-
erating within similar energy constraints. This advancement



underscores the potential of AdaFire in narrowing the per-
formance gap between SNNs and ANNs, thereby expanding
the feasibility of deploying energy-efficient SNNs in scenar-
ios traditionally dominated by ANNs due to their superior
accuracy and detail resolution.



OursCalibrationANN

dog: 0.93 dog: 0.45 dog: 0.70

motorbike: 0.80 motorbike: 0.35 motorbike: 0.68

chair: 0.89 chair: 0.34 chair: 0.74

car: 0.95 car: 0.63 car: 0.88

person: 0.78 person: 0.26 person: 0.60

Figure 5: Visualization of Object Detection on the VOC dataset.



Train: 0.94 Train: 0.48 Train: 0.81

person: 0.84 person: 0.37 person: 0.81

chair: 0.92 chair: 0.30 chair: 0.77

zebra: 0.91 zebra: 0.55 zebra: 0.88

bird: 0.77 bird: 0.27 bird: 0.71

ANN Calibration Ours
Figure 6: Visualization of Object Detection on the COCO dataset.



Original ANN Calibration Ours
Figure 7: Visualization of Semantic Segmentation on the VOC dataset.



Original ANN Calibration Ours
Figure 8: Visualization of Semantic Segmentation on the COCO dataset.



References
Bu, T.; Fang, W.; Ding, J.; Dai, P.; Yu, Z.; and Huang, T.
2021a. Optimal ANN-SNN Conversion for High-accuracy
and Ultra-low-latency Spiking Neural Networks. In Interna-
tional Conference on Learning Representations.
Bu, T.; Fang, W.; Ding, J.; Dai, P.; Yu, Z.; and Huang, T.
2021b. Optimal ANN-SNN Conversion for High-accuracy
and Ultra-low-latency Spiking Neural Networks. In Interna-
tional Conference on Learning Representations.
Cao, J.; Wang, Z.; Guo, H.; Cheng, H.; Zhang, Q.; and Xu,
R. 2024. Spiking denoising diffusion probabilistic models.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 4912–4921.
Cao, Y.; Chen, Y.; and Khosla, D. 2015. Spiking deep convo-
lutional neural networks for energy-efficient object recogni-
tion. International Journal of Computer Vision, 113: 54–66.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A Large-Scale Hierarchical Image
Database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 248–255. Ieee.
Ding, J.; Yu, Z.; Tian, Y.; and Huang, T. 2021. Optimal Ann-
Snn Conversion for Fast and Accurate Inference in Deep
Spiking Neural Networks. arXiv preprint arXiv:2105.11654.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The pascal visual object classes
(voc) challenge. International journal of computer vision, 88:
303–338.
Gu, P.; Xiao, R.; Pan, G.; and Tang, H. 2019. STCA: Spatio-
Temporal Credit Assignment with Delayed Feedback in Deep
Spiking Neural Networks. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, 1366–1372. Macao, China: International Joint Confer-
ences on Artificial Intelligence Organization. ISBN 978-0-
9992411-4-1.
Hao, Z.; Bu, T.; Ding, J.; Huang, T.; and Yu, Z. 2023a. Re-
ducing ann-snn conversion error through residual membrane
potential. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 37, 11–21.
Hao, Z.; Ding, J.; Bu, T.; Huang, T.; and Yu, Z. 2023b. Bridg-
ing the Gap between ANNs and SNNs by Calibrating Offset
Spikes. In The Eleventh International Conference on Learn-
ing Representations.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Li, H.; Liu, H.; Ji, X.; Li, G.; and Shi, L. 2017. CIFAR10-
DVS: An Event-Stream Dataset for Object Classification.
Frontiers in Neuroscience, 11.
Li, Y.; Deng, S.; Dong, X.; Gong, R.; and Gu, S. 2021a. A
Free Lunch from ANN: Towards Efficient, Accurate Spiking
Neural Networks Calibration. In International Conference
on Machine Learning, 6316–6325. PMLR.

Li, Y.; Deng, S.; Dong, X.; Gong, R.; and Gu, S. 2021b. A
Free Lunch from ANN: Towards Efficient, Accurate Spiking
Neural Networks Calibration. In International Conference
on Machine Learning, 6316–6325. PMLR.
Li, Y.; Kim, Y.; Park, H.; Geller, T.; and Panda, P. 2022. Neu-
romorphic Data Augmentation for Training Spiking Neural
Networks. arXiv preprint arXiv:2203.06145.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.;
Ramanan, D.; Dollár, P.; and Zitnick, C. L. 2014. Mi-
crosoft Coco: Common Objects in Context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13,
740–755. Springer.
Liu, Q.; Xing, D.; Tang, H.; Ma, D.; and Pan, G. 2021. Event-
Based Action Recognition Using Motion Information and
Spiking Neural Networks. In IJCAI, 1743–1749.
Miao, S.; Chen, G.; Ning, X.; Zi, Y.; Ren, K.; Bing, Z.; and
Knoll, A. 2019. Neuromorphic Vision Datasets for Pedestrian
Detection, Action Recognition, and Fall Detection. Frontiers
in neurorobotics, 13: 38.
Orchard, G.; Jayawant, A.; Cohen, G. K.; and Thakor, N.
2015. Converting Static Image Datasets to Spiking Neuro-
morphic Datasets Using Saccades. Frontiers in Neuroscience,
9.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017. Pointnet:
Deep learning on point sets for 3d classification and segmen-
tation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 652–660.
Sironi, A.; Brambilla, M.; Bourdis, N.; Lagorce, X.; and
Benosman, R. 2018. HATS: Histograms of Averaged Time
Surfaces for Robust Event-Based Object Classification. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1731–1740.
Viale, A.; Marchisio, A.; Martina, M.; Masera, G.; and
Shafique, M. 2021. Carsnn: An Efficient Spiking Neural
Network for Event-Based Autonomous Cars on the Loihi
Neuromorphic Research Processor. In 2021 International
Joint Conference on Neural Networks (IJCNN), 1–10. IEEE.
Wang, Z.; Fang, Y.; Cao, J.; Zhang, Q.; Wang, Z.; and Xu,
R. 2023. Masked spiking transformer. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
1761–1771.
Yao, M.; Zhao, G.; Zhang, H.; Hu, Y.; Deng, L.; Tian, Y.;
Xu, B.; and Li, G. 2023. Attention Spiking Neural Networks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.
Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I.-C.; Yan, M.; Su,
H.; Lu, C.; Huang, Q.; Sheffer, A.; and Guibas, L. 2016. A
scalable active framework for region annotation in 3d shape
collections. ACM Transactions on Graphics (ToG), 35(6):
1–12.


