This is the official implementation of the 'SpikSSD: Better Extraction and Fusion for Object Detection with Spiking Neuron Networks' .
To evaluate or train SpikSSD you will need to download the datasets:
Dataset Name | Link |
---|---|
PASCAL VOC Dataset | Download PASCAL VOC Detection Dataset |
COCO Dataset | Download COCO Detection Dataset |
GEN1 Dataset | Download Gen1 Automotive Detection Dataset |
python object_detection.py -num_workers 4 -test -save_ckpt -backbone mdsresnet-18 -b 32 -augmentation -fusion -decode spiking
python object_detection.py -num_workers 4 -test -save_ckpt -backbone mdsresnet-34 -b 32 -augmentation -fusion -decode spiking
During evaluation, it is necessary to substitute the relevant pretrained model data into the appropriate root directory.
python object_detection.py -num_workers 4 -test -save_ckpt -backbone mdsresnet-18 -b 32 -augmentation -fusion -decode spiking -pretrained path_to_model -no_train
python object_detection.py -num_workers 4 -test -save_ckpt -backbone mdsresnet-34 -b 32 -augmentation -fusion -decode spiking -pretrained path_to_model -no_train
This code is based on SFOD: Spiking Fusion Object Detector . Thanks to the contributors of SFOD: Spiking Fusion Object Detector .
@inproceedings{fan2024sfod,
title={SFOD: Spiking Fusion Object Detector},
author={Fan, Yimeng and Zhang, Wei and Liu, Changsong and Li, Mingyang and Lu, Wenrui},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={17191--17200},
year={2024}
}