Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Profile token generation with more settings #364

Merged
merged 7 commits into from
Sep 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions benchmark/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,14 @@ python profile_throughput.py \

`profile_generation.py` perform benchmark with dummy data.

```shell
pip install nvidia-ml-py
```

```bash
python profile_generation.py \
/path/to/your/model \
--concurrency 8 --input_seqlen 0 --output_seqlen 2048
--model-path /path/to/your/model \
--concurrency 1 8 --prompt-tokens 0 512 --completion-tokens 2048 512
```

## profile serving
Expand Down
195 changes: 187 additions & 8 deletions benchmark/profile_generation.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,22 @@
# Copyright (c) OpenMMLab. All rights reserved.
# import multiprocessing as mp
import argparse
import csv
import logging
import os
import os.path as osp
import time
from dataclasses import dataclass
from queue import Queue
from threading import Thread
from typing import List

import fire
import numpy as np
from pynvml import (NVMLError, nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex,
nvmlDeviceGetMemoryInfo, nvmlDeviceGetName,
nvmlDeviceGetPowerState, nvmlDeviceGetTemperature,
nvmlInit, nvmlShutdown, nvmlSystemGetDriverVersion)
from tqdm import tqdm

from lmdeploy.turbomind import Tokenizer, TurboMind

Expand Down Expand Up @@ -77,12 +87,12 @@ def _infer(model, session_id):
print(f'end warmup, elapsed time: {round(_end - _start, 2)}s')


def main(model_path: str,
concurrency: int = 1,
input_seqlen: int = 0,
output_seqlen: int = 512,
test_round: int = 10,
tp: int = 1):
def profile_throughput(model_path: str,
concurrency: int = 1,
input_seqlen: int = 0,
output_seqlen: int = 512,
test_round: int = 10,
tp: int = 1):
tokenizer_model_path = osp.join(model_path, 'triton_models', 'tokenizer')
tokenizer = Tokenizer(tokenizer_model_path)
tm_model = TurboMind(model_path=model_path, tp=tp)
Expand Down Expand Up @@ -141,7 +151,176 @@ def main(model_path: str,
f'{token_latency_min:.2f}s, {token_latency_max:.2f}s, '
f'{token_latency_ave:.2f}s\n'
f'throughput: {throughput:.2f} token/s\n{"-" * 50}')
return tm_model.model_name, throughput, tm_model.gpu_count


class MemoryMonitor:
from multiprocessing import Manager
max_mem = Manager().Value('f', 0) # GB
device_count = Manager().Value('f', 0)

@staticmethod
def nvidia_info():
# pip install nvidia-ml-py
nvidia_dict = {
'state': True,
'nvidia_version': '',
'nvidia_count': 0,
'gpus': []
}
try:
nvmlInit()
nvidia_dict['nvidia_version'] = nvmlSystemGetDriverVersion()
nvidia_dict['nvidia_count'] = nvmlDeviceGetCount()
for i in range(nvidia_dict['nvidia_count']):
handle = nvmlDeviceGetHandleByIndex(i)
memory_info = nvmlDeviceGetMemoryInfo(handle)
gpu = {
'gpu_name': nvmlDeviceGetName(handle),
'total': memory_info.total,
'free': memory_info.free,
'used': memory_info.used,
'temperature': f'{nvmlDeviceGetTemperature(handle, 0)}℃',
'powerStatus': nvmlDeviceGetPowerState(handle)
}
nvidia_dict['gpus'].append(gpu)
except NVMLError as _: # noqa
nvidia_dict['state'] = False
except Exception as _: # noqa
nvidia_dict['state'] = False
finally:
try:
nvmlShutdown()
except: # noqa
pass
return nvidia_dict

@classmethod
def mem_monitor(cls):
info = cls.nvidia_info()
max_mem = 0
mem_start = 0
cls.device_count.value = len(info['gpus'])
for used_total in info['gpus']:
mem_start += used_total['used']
while True:
info = cls.nvidia_info()
used = 0
for used_total in info['gpus']:
used += used_total['used']
if used > max_mem:
max_mem = used
cls.max_mem.value = (max_mem - mem_start) / (1 << 30)

@classmethod
def start(cls):
cls._running = True
from multiprocessing import Process
cls.proc = Process(target=cls.mem_monitor)
cls.proc.start()

@classmethod
def terminate(cls) -> float:
"""Terminate the subprocess and return maximum memory."""
cls.proc.kill()
return cls.max_mem.value


@dataclass
class ProfileResult:
model_name: str
batch: int
prompt_tokens: int
completion_tokens: int
throughput_per_proc: float
throughput_per_node: float
mem_per_proc: float
mem_per_gpu: float
mem_per_node: float


def parse_args():
parser = argparse.ArgumentParser(description='Regression Test')
parser.add_argument('--model-path',
type=str,
help='benchmark test model path')
parser.add_argument('--concurrency',
nargs='+',
type=int,
help='how many requests launched concurrently',
default=[1, 8, 16, 32])
parser.add_argument(
'--prompt-tokens',
nargs='+',
type=int,
help='how many requests launched concurrently. One-to-one'
'correspondence with completion-tokens',
default=[64, 512, 512, 1024])
parser.add_argument('--completion-tokens',
nargs='+',
type=int,
help='how many tokens to be generated. One-to-one'
'correspondence with prompt-tokens',
default=[512, 512, 1024, 1024])
parser.add_argument('--tp', type=int, help='Tensor parallel', default=1)
parser.add_argument('--dst-csv',
type=str,
help='Where to save the result.',
default='profile_generation.csv')
parser.add_argument('--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
args = parser.parse_args()
return args


def main():
args = parse_args()
os.environ['TM_LOG_LEVEL'] = args.log_level
results: List[ProfileResult] = []
for batch in tqdm(args.concurrency):
for prompt_tokens, completion_tokens in tqdm(
zip(args.prompt_tokens, args.completion_tokens)):
MemoryMonitor.start()
from functools import partial
from multiprocessing import Pool
profile_target = partial(profile_throughput,
concurrency=batch,
input_seqlen=prompt_tokens,
output_seqlen=completion_tokens,
tp=args.tp)
output = Pool(1).map(profile_target, (args.model_path, ))
model_name, throughput_per_proc, tp = output[0]
time.sleep(5) # wait a while for releasing GPU mem
memory = MemoryMonitor.terminate()
device_count = MemoryMonitor.device_count.value
results.append(
ProfileResult(model_name=model_name,
batch=batch,
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
throughput_per_proc=throughput_per_proc,
throughput_per_node=throughput_per_proc / tp *
device_count,
mem_per_proc=memory,
mem_per_gpu=memory / tp,
mem_per_node=memory / tp * device_count))
with open(args.dst_csv, 'w') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([
'batch', 'prompt_tokens', 'completion_tokens',
'throughput_per_proc(token/s)', 'throughput_per_node(token/s)',
'mem_per_proc(GB)', 'mem_per_gpu(GB)', 'mem_per_node(GB)'
])
for re in results:
writer.writerow([
re.batch, re.prompt_tokens, re.completion_tokens,
f'{re.throughput_per_proc:.2f}',
f'{re.throughput_per_node:.2f}', f'{re.mem_per_proc:.2f}',
f'{re.mem_per_gpu:.2f}', f'{re.mem_per_node:.2f}'
])


if __name__ == '__main__':
fire.Fire(main)
main()