Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the HIST and IGMTF model on Alpha360 #1040

Merged
merged 12 commits into from
Apr 13, 2022
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
Recent released features
| Feature | Status |
| -- | ------ |
| HIST and IGMTF models | :chart_with_upwards_trend: [Released](https://github.com/microsoft/qlib/pull/1040) on Apr 10, 2022 |
| Qlib notebook tutorial | 📖 [Released](https://github.com/microsoft/qlib/pull/1037) on Apr 7, 2022 |
| Ibovespa index data | :rice: [Released](https://github.com/microsoft/qlib/pull/990) on Apr 6, 2022 |
| Point-in-Time database | :hammer: [Released](https://github.com/microsoft/qlib/pull/343) on Mar 10, 2022 |
Expand Down Expand Up @@ -339,6 +340,8 @@ Here is a list of models built on `Qlib`.
- [TCN based on pytorch (Shaojie Bai, et al. 2018)](examples/benchmarks/TCN/)
- [ADARNN based on pytorch (YunTao Du, et al. 2021)](examples/benchmarks/ADARNN/)
- [ADD based on pytorch (Hongshun Tang, et al.2020)](examples/benchmarks/ADD/)
- [IGMTF based on pytorch (Wentao Xu, et al.2021)](examples/benchmarks/IGMTF/)
- [HIST based on pytorch (Wentao Xu, et al.2021)](examples/benchmarks/HIST/)

Your PR of new Quant models is highly welcomed.

Expand Down
3 changes: 3 additions & 0 deletions examples/benchmarks/HIST/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# HIST
* Code: [https://github.com/Wentao-Xu/HIST](https://github.com/Wentao-Xu/HIST)
* Paper: [HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared InformationAdaRNN: Adaptive Learning and Forecasting for Time Series](https://arxiv.org/abs/2110.13716).
Binary file not shown.
4 changes: 4 additions & 0 deletions examples/benchmarks/HIST/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
pandas==1.1.2
numpy==1.21.0
scikit_learn==0.23.2
torch==1.7.0
92 changes: 92 additions & 0 deletions examples/benchmarks/HIST/workflow_config_hist_Alpha360.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
signal:
- <MODEL>
- <DATASET>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: HIST
module_path: qlib.contrib.model.pytorch_hist
kwargs:
d_feat: 6
hidden_size: 64
num_layers: 2
dropout: 0
n_epochs: 200
lr: 1e-4
early_stop: 20
metric: ic
loss: mse
base_model: LSTM
model_path: "benchmarks/LSTM/model_lstm_csi300.pkl"
stock2concept: "benchmarks/HIST/qlib_csi300_stock2concept.npy"
stock_index: "benchmarks/HIST/qlib_csi300_stock_index.npy"
GPU: 0
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
4 changes: 4 additions & 0 deletions examples/benchmarks/IGMTF/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# IGMTF
* Code: [https://github.com/Wentao-Xu/IGMTF](https://github.com/Wentao-Xu/IGMTF)
* Paper: [IGMTF: An Instance-wise Graph-based Framework for
Multivariate Time Series Forecasting](https://arxiv.org/abs/2109.06489).
4 changes: 4 additions & 0 deletions examples/benchmarks/IGMTF/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
pandas==1.1.2
numpy==1.21.0
scikit_learn==0.23.2
torch==1.7.0
89 changes: 89 additions & 0 deletions examples/benchmarks/IGMTF/workflow_config_igmtf_Alpha360.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn
market: &market csi300
benchmark: &benchmark SH000300
data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: DropnaLabel
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]
port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy
kwargs:
model: <MODEL>
dataset: <DATASET>
topk: 50
n_drop: 5
backtest:
start_time: 2017-01-01
end_time: 2020-08-01
account: 100000000
benchmark: *benchmark
exchange_kwargs:
limit_threshold: 0.095
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5
task:
model:
class: IGMTF
module_path: qlib.contrib.model.pytorch_igmtf
kwargs:
d_feat: 6
hidden_size: 64
num_layers: 2
dropout: 0
n_epochs: 200
lr: 1e-4
early_stop: 20
metric: ic
loss: mse
base_model: LSTM
model_path: "benchmarks/LSTM/model_lstm_csi300.pkl"
GPU: 0
dataset:
class: DatasetH
module_path: qlib.data.dataset
kwargs:
handler:
class: Alpha360
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs:
model: <MODEL>
dataset: <DATASET>
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
3 changes: 3 additions & 0 deletions examples/benchmarks/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,9 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
| GATs (Petar Velickovic, et al.) | Alpha360 | 0.0476±0.00 | 0.3508±0.02 | 0.0598±0.00 | 0.4604±0.01 | 0.0824±0.02 | 1.1079±0.26 | -0.0894±0.03 |
| TCTS(Xueqing Wu, et al.) | Alpha360 | 0.0508±0.00 | 0.3931±0.04 | 0.0599±0.00 | 0.4756±0.03 | 0.0893±0.03 | 1.2256±0.36 | -0.0857±0.02 |
| TRA(Hengxu Lin, et al.) | Alpha360 | 0.0485±0.00 | 0.3787±0.03 | 0.0587±0.00 | 0.4756±0.03 | 0.0920±0.03 | 1.2789±0.42 | -0.0834±0.02 |
| IGMTF(Wentao Xu, et al.) | Alpha360 | 0.0480±0.00 | 0.3589±0.02 | 0.0606±0.00 | 0.4773±0.01 | 0.0946±0.02 | 1.3509±0.25 | -0.0716±0.02 |
| HIST(Wentao Xu, et al.) | Alpha360 | 0.0522±0.00 | 0.3530±0.01 | 0.0667±0.00 | 0.4576±0.01 | 0.0987±0.02 | 1.3726±0.27 | -0.0681±0.01 |


- The selected 20 features are based on the feature importance of a lightgbm-based model.
- The base model of DoubleEnsemble is LGBM.
Expand Down
Loading