Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor TRA #531

Merged
merged 8 commits into from
Jul 30, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions examples/benchmarks/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
| TCTS (Xueqing Wu, et al.)| Alpha360 | 0.0485±0.00 | 0.3689±0.04| 0.0586±0.00 | 0.4669±0.02 | 0.0816±0.02 | 1.1572±0.30| -0.0689±0.02 |
| Transformer (Ashish Vaswani, et al.)| Alpha360 | 0.0141±0.00 | 0.0917±0.02| 0.0331±0.00 | 0.2357±0.03 | -0.0259±0.03 | -0.3323±0.43| -0.1763±0.07 |
| Localformer (Juyong Jiang, et al.)| Alpha360 | 0.0408±0.00 | 0.2988±0.03| 0.0538±0.00 | 0.4105±0.02 | 0.0275±0.03 | 0.3464±0.37| -0.1182±0.03 |
| TRA (Hengxu Lin, et al.)| Alpha360 | 0.0500±0.00 | 0.3966±0.04 | 0.0594±0.00 | 0.4856±0.03 | 0.1000±0.02 | 1.3425±0.31 | -0.0845±0.02 |

## Alpha158 dataset
| Model Name | Dataset | IC | ICIR | Rank IC | Rank ICIR | Annualized Return | Information Ratio | Max Drawdown |
Expand All @@ -43,6 +44,8 @@ The numbers shown below demonstrate the performance of the entire `workflow` of
| TabNet (Sercan O. Arik, et al.)| Alpha158 | 0.0383±0.00 | 0.3414±0.00| 0.0388±0.00 | 0.3460±0.00 | 0.0226±0.00 | 0.2652±0.00| -0.1072±0.00 |
| Transformer (Ashish Vaswani, et al.)| Alpha158 | 0.0274±0.00 | 0.2166±0.04| 0.0409±0.00 | 0.3342±0.04 | 0.0204±0.03 | 0.2888±0.40| -0.1216±0.04 |
| Localformer (Juyong Jiang, et al.)| Alpha158 | 0.0355±0.00 | 0.2747±0.04| 0.0466±0.00 | 0.3762±0.03 | 0.0506±0.02 | 0.7447±0.34| -0.0875±0.02 |
| TRA (Hengxu Lin, et al.)| Alpha158 (with selected 20 features) | 0.0440±0.00 | 0.3592±0.03 | 0.0500±0.00 | 0.4256±0.02 | 0.0747±0.03 | 1.1281±0.49 | -0.0813±0.03 |
| TRA (Hengxu Lin, et al.)| Alpha158 | 0.0474±0.00 | 0.3653±0.03 | 0.0573±0.00 | 0.4494±0.02 | 0.0770±0.02 | 1.1342±0.38 | -0.0852±0.03 |

- The selected 20 features are based on the feature importance of a lightgbm-based model.
- The base model of DoubleEnsemble is LGBM.
93 changes: 52 additions & 41 deletions examples/benchmarks/TRA/README.md
Original file line number Diff line number Diff line change
@@ -1,53 +1,77 @@
# Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport

This code provides a PyTorch implementation for TRA (Temporal Routing Adaptor), as described in the paper [Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport](http://arxiv.org/abs/2106.12950).
Temporal Routing Adaptor (TRA) is designed to capture multiple trading patterns in the stock market data. Please refer to [our paper](http://arxiv.org/abs/2106.12950) for more details.

* TRA (Temporal Routing Adaptor) is a lightweight module that consists of a set of independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors.
* We also design a learning algorithm based on Optimal Transport (OT) to obtain the optimal sample to predictor assignment and effectively optimize the router with such assignment through an auxiliary loss term.
If you find our work useful in your research, please cite:
```
@inproceedings{HengxuKDD2021,
author = {Hengxu Lin and Dong Zhou and Weiqing Liu and Jiang Bian},
title = {Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport},
booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
series = {KDD '21},
year = {2021},
publisher = {ACM},
}

@article{yang2020qlib,
title={Qlib: An AI-oriented Quantitative Investment Platform},
author={Yang, Xiao and Liu, Weiqing and Zhou, Dong and Bian, Jiang and Liu, Tie-Yan},
journal={arXiv preprint arXiv:2009.11189},
year={2020}
}
```

## Usage (Recommended)

**Update**: `TRA` has been moved to `qlib.contrib.model.pytorch_tra` to support other `Qlib` components like `qlib.workflow` and `Alpha158/Alpha360` dataset.

Please follow the official [doc](https://qlib.readthedocs.io/en/latest/component/workflow.html) to use `TRA` with `workflow`. Here we also provide several example config files:

- `workflow_config_tra_Alpha360.yaml`: running `TRA` with `Alpha360` dataset
- `workflow_config_tra_Alpha158.yaml`: running `TRA` with `Alpha158` dataset (with feature subsampling)
- `workflow_config_tra_Alpha158_full.yaml`: running `TRA` with `Alpha158` dataset (without feature subsampling)

The performances of `TRA` are reported in [Benchmarks](https://github.com/microsoft/qlib/tree/main/examples/benchmarks).

# Running TRA
## Usage (Not Maintained)

## Requirements
- Install `Qlib` main branch
This section is used to reproduce the results in the paper.

## Running
### Running

We attach our running scripts for the paper in `run.sh`.

And here are two ways to run the model:

* Running from scripts with default parameters
You can directly run from Qlib command `qrun`:
```
qrun configs/config_alstm.yaml
```

You can directly run from Qlib command `qrun`:
```
qrun configs/config_alstm.yaml
```

* Running from code with self-defined parameters
Setting different parameters is also allowed. See codes in `example.py`:
```
python example.py --config_file configs/config_alstm.yaml
```

Here we trained TRA on a pretrained backbone model. Therefore we run `*_init.yaml` before TRA's scipts.
Setting different parameters is also allowed. See codes in `example.py`:
```
python example.py --config_file configs/config_alstm.yaml
```

# Results
Here we trained TRA on a pretrained backbone model. Therefore we run `*_init.yaml` before TRA's scipts.

## Outputs
### Results

After running the scripts, you can find result files in path `./output`:

`info.json` - config settings and result metrics.

`log.csv` - running logs.
* `info.json` - config settings and result metrics.
* `log.csv` - running logs.
* `model.bin` - the model parameter dictionary.
* `pred.pkl` - the prediction scores and output for inference.

`model.bin` - the model parameter dictionary.
Evaluation metrics reported in the paper:

`pred.pkl` - the prediction scores and output for inference.

## Our Results
| Methods | MSE| MAE| IC | ICIR | AR | AV | SR | MDD |
|-------------------|-------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|-------|-------|------|-----|-----|-----|-----|-----|-----|
|Linear|0.163|0.327|0.020|0.132|-3.2%|16.8%|-0.191|32.1%|
|LightGBM|0.160(0.000)|0.323(0.000)|0.041|0.292|7.8%|15.5%|0.503|25.7%|
|MLP|0.160(0.002)|0.323(0.003)|0.037|0.273|3.7%|15.3%|0.264|26.2%|
Expand All @@ -61,21 +85,8 @@ After running the scripts, you can find result files in path `./output`:

A more detailed demo for our experiment results in the paper can be found in `Report.ipynb`.

# Common Issues
## Common Issues

For help or issues using TRA, please submit a GitHub issue.

Sometimes we might encounter situation where the loss is `NaN`, please check the `epsilon` parameter in the sinkhorn algorithm, adjusting the `epsilon` according to input's scale is important.

# Citation
If you find this repository useful in your research, please cite:
```
@inproceedings{HengxuKDD2021,
author = {Hengxu Lin and Dong Zhou and Weiqing Liu and Jiang Bian},
title = {Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport},
booktitle = {Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
series = {KDD '21},
year = {2021},
publisher = {ACM},
}
```
Sometimes we might encounter situation where the loss is `NaN`, please check the `epsilon` parameter in the sinkhorn algorithm, adjusting the `epsilon` according to input's scale is important.
126 changes: 126 additions & 0 deletions examples/benchmarks/TRA/workflow_config_tra_Alpha158.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn

market: &market csi300
benchmark: &benchmark SH000300

data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: FilterCol
kwargs:
fields_group: feature
col_list: ["RESI5", "WVMA5", "RSQR5", "KLEN", "RSQR10", "CORR5", "CORD5", "CORR10",
"ROC60", "RESI10", "VSTD5", "RSQR60", "CORR60", "WVMA60", "STD5",
"RSQR20", "CORD60", "CORD10", "CORR20", "KLOW"]
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]

num_states: &num_states 3

memory_mode: &memory_mode sample

tra_config: &tra_config
num_states: *num_states
hidden_size: 16
tau: 1.0
src_info: LR_TPE

model_config: &model_config
input_size: 20
hidden_size: 64
num_layers: 2
rnn_arch: LSTM
use_attn: True
dropout: 0.0

port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy.strategy
kwargs:
topk: 50
n_drop: 5
backtest:
verbose: False
limit_threshold: 0.095
account: 100000000
benchmark: *benchmark
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5

task:
model:
class: TRAModel
module_path: qlib.contrib.model.pytorch_tra
kwargs:
tra_config: *tra_config
model_config: *model_config
model_type: RNN
lr: 1e-3
n_epochs: 100
max_steps_per_epoch: 100
early_stop: 10
smooth_steps: 5
seed: 0
logdir:
lamb: 1.0
rho: 1.0
transport_method: router
memory_mode: *memory_mode
eval_train: False
eval_test: True
pretrain: True
init_state:
freeze_model: False
freeze_predictors: False
dataset:
class: MTSDatasetH
module_path: qlib.contrib.data.dataset
kwargs:
handler:
class: Alpha158
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
seq_len: 60
horizon: 2
input_size:
num_states: *num_states
batch_size: 1024
n_samples:
memory_mode: *memory_mode
drop_last: True
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs: {}
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
120 changes: 120 additions & 0 deletions examples/benchmarks/TRA/workflow_config_tra_Alpha158_full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
qlib_init:
provider_uri: "~/.qlib/qlib_data/cn_data"
region: cn

market: &market csi300
benchmark: &benchmark SH000300

data_handler_config: &data_handler_config
start_time: 2008-01-01
end_time: 2020-08-01
fit_start_time: 2008-01-01
fit_end_time: 2014-12-31
instruments: *market
infer_processors:
- class: RobustZScoreNorm
kwargs:
fields_group: feature
clip_outlier: true
- class: Fillna
kwargs:
fields_group: feature
learn_processors:
- class: CSRankNorm
kwargs:
fields_group: label
label: ["Ref($close, -2) / Ref($close, -1) - 1"]

num_states: &num_states 3

memory_mode: &memory_mode sample

tra_config: &tra_config
num_states: *num_states
hidden_size: 16
tau: 1.0
src_info: LR_TPE

model_config: &model_config
input_size: 158
hidden_size: 256
num_layers: 2
rnn_arch: LSTM
use_attn: True
dropout: 0.2

port_analysis_config: &port_analysis_config
strategy:
class: TopkDropoutStrategy
module_path: qlib.contrib.strategy.strategy
kwargs:
topk: 50
n_drop: 5
backtest:
verbose: False
limit_threshold: 0.095
account: 100000000
benchmark: *benchmark
deal_price: close
open_cost: 0.0005
close_cost: 0.0015
min_cost: 5

task:
model:
class: TRAModel
module_path: qlib.contrib.model.pytorch_tra
kwargs:
tra_config: *tra_config
model_config: *model_config
model_type: RNN
lr: 1e-3
n_epochs: 100
max_steps_per_epoch: 100
early_stop: 10
smooth_steps: 5
seed: 0
logdir:
lamb: 1.0
rho: 1.0
transport_method: router
memory_mode: *memory_mode
eval_train: False
eval_test: True
pretrain: True
init_state:
freeze_model: False
freeze_predictors: False
dataset:
class: MTSDatasetH
module_path: qlib.contrib.data.dataset
kwargs:
handler:
class: Alpha158
module_path: qlib.contrib.data.handler
kwargs: *data_handler_config
segments:
train: [2008-01-01, 2014-12-31]
valid: [2015-01-01, 2016-12-31]
test: [2017-01-01, 2020-08-01]
seq_len: 60
horizon: 2
input_size:
num_states: *num_states
batch_size: 1024
n_samples:
memory_mode: *memory_mode
drop_last: True
record:
- class: SignalRecord
module_path: qlib.workflow.record_temp
kwargs: {}
- class: SigAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
ana_long_short: False
ann_scaler: 252
- class: PortAnaRecord
module_path: qlib.workflow.record_temp
kwargs:
config: *port_analysis_config
Loading