TalentTrack is a recruitment analysis tool that uses Product Quantization (PQ) for candidate similarity matching and provides visualizations for talent pool analysis, model monitoring, and recruitment pipeline tracking.
- Talent Pool Visualization with TSNE clustering
- Candidate similarity scoring using Product Quantization
- Model explanability with SHAP values
- Geographic distribution analysis
- Model drift detection
- Recruitment pipeline monitoring
- Interactive data tables and filtering
- Clone the repository:
git clone https://github.com/oldhero5/talent_track.git
cd talent_track
- Create and activate a virtual environment:
uv venv
source .venv/bin/activate # On Unix/macOS
# or
.venv\Scripts\activate # On Windows
- Install dependencies:
uv pip install -r requirements.txt
talent_track/
├── talent_track/
│ ├── __init__.py
│ ├── app.py
│ ├── functions.py
│ ├── static/
│ │ ├── css/
│ │ │ └── style.css
│ │ └── js/
│ │ ├── talent_pool.js
│ │ ├── model_analysis.js
│ │ └── model_monitoring.js
│ └── templates/
│ ├── index.html
│ ├── talent_pool.html
│ ├── model_analysis.html
│ └── model_monitoring.html
├── pyproject.toml
└── requirements.txt
-
Make sure you're in the project root directory and your virtual environment is activated
-
Run the Flask application:
python -m talent_track.app
- Open your browser and navigate to:
http://localhost:5000
- Interactive scatter plot showing employee and candidate clustering
- Filter by status and experience level
- Hover for detailed information
- Click for candidate details
- Candidate similarity scoring
- SHAP value explanations
- Feature importance visualization
- Individual candidate analysis
- Data drift detection
- Confusion matrix
- ROC curve analysis
- Performance metrics tracking
- Python 3.8+
- uv package manager
- Node.js (for DataTables)
# Clone repository
git clone https://github.com/yourusername/talent_track.git
cd talent_track
# Create virtual environment
uv venv
source .venv/bin/activate
# Install dependencies
uv pip install -r requirements.txt
pytest tests/
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details
- FAISS library by Facebook Research
- SHAP (SHapley Additive exPlanations)
- Flask web framework
- DataTables for interactive tables
- Plotly for interactive visualizations
- Template Not Found
# Make sure your template folder path is correct in app.py
app = Flask(__name__,
template_folder='/path/to/your/templates',
static_folder='static')
- Data Initialization Errors
# Check the console output for initialization errors
# Make sure all dependencies are installed
uv pip install -r requirements.txt
- Visualization Errors
# If visualizations aren't showing:
# - Check browser console for JavaScript errors
# - Verify that static files are being served correctly
# - Check that matplotlib backend is set to 'Agg'
For support, please open an issue in the GitHub repository or contact the maintainers.